Unknown

Dataset Information

0

Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons.


ABSTRACT: Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (CaV2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of CaV2.2 channel inhibition by FFAR3 in a global population of rat sympathetic neurons. Therefore, we focused on a small subpopulation of mouse sympathetic neurons using an FFAR3 antibody and an Ffar3 reporter mouse to perform immunofluorescent and electrophysiological studies. Whole-cell patch-clamp recordings of identified FFAR3-expressing neurons from reporter mice revealed a 2.5-fold decrease in the CaV2.2-FFAR3 inhibitory coupling variability and 1.5-fold increase in the mean ICa2+ inhibition, when compared with unlabeled neurons from wild-type mice. Further, we found that the ablation of Ffar3 gene expression in two knockout mouse models led to a complete loss-of-function. Subpopulations of sympathetic neurons are associated with discrete functional pathways. However, little is known about the neural pathways of the FFAR3-expressing subpopulation. Our data indicate that FFAR3 is expressed primarily in neurons with a vasoconstrictor phenotype. Thus, fine-tuning of chemically-coded neurotransmitters may accomplish an adequate outcome.

SUBMITTER: Colina C 

PROVIDER: S-EPMC6255804 | biostudies-literature | 2018 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Selective tracking of FFAR3-expressing neurons supports receptor coupling to N-type calcium channels in mouse sympathetic neurons.

Colina Claudia C   Puhl Henry L HL   Ikeda Stephen R SR  

Scientific reports 20181126 1


Activation of short-chain free fatty acid receptors 3 (FFAR3) has been suggested to promote sympathetic outflow in postganglionic sympathetic neurons or hamper it by a negative coupling to N-type calcium (Ca<sub>V</sub>2.2) channels. Heterogeneity of FFAR3 expression in sympathetic neurons, however, renders single neurons studies extremely time-consuming in wild-type mice. Previous studies demonstrated large variability of the degree of Ca<sub>V</sub>2.2 channel inhibition by FFAR3 in a global p  ...[more]

Similar Datasets

| S-EPMC7797209 | biostudies-literature
| S-EPMC6839919 | biostudies-literature
| S-EPMC3299568 | biostudies-literature
| S-EPMC8795833 | biostudies-literature
| S-EPMC4996639 | biostudies-literature
| S-EPMC5661965 | biostudies-literature
| S-EPMC3850046 | biostudies-literature
| S-EPMC7089966 | biostudies-literature
| S-EPMC5960682 | biostudies-literature
| S-EPMC8528277 | biostudies-literature