Project description:Adrenal chromaffin cells comprise the neuroendocrine arm of the sympathetic nervous system and secrete catecholamines to coordinate the appropriate stress response. Deletion of the serotonin (5-HT) transporter (SERT) gene in mice (SERT-/- mice) or pharmacological block of SERT function in rodents and humans augments this sympathoadrenal stress response (epinephrine secretion). The prevailing assumption is that loss of CNS SERT alters central drive to the peripheral sympathetic nervous system. Adrenal chromaffin cells also prominently express SERT where it might coordinate accumulation of 5-HT for reuse in the autocrine control of stress-evoked catecholamine secretion. To help test this hypothesis, we have generated a novel mouse model with selective excision of SERT in the peripheral sympathetic nervous system (SERTΔTH), generated by crossing floxed SERT mice with tyrosine hydroxylase Cre driver mice. SERT expression, assessed by western blot, was abolished in the adrenal gland but not perturbed in the CNS of SERTΔTH mice. SERT-mediated [3H] 5-HT uptake was unaltered in midbrain, hindbrain, and spinal cord synaptosomes, confirming transporter function was intact in the CNS. Endogenous midbrain and whole blood 5-HT homeostasis was unperturbed in SERTΔTH mice, contrasting with the depleted 5-HT content in SERT-/- mice. Selective SERT excision reduced adrenal gland 5-HT content by ≈ 50% in SERTΔTH mice but had no effect on adrenal catecholamine content. This novel model confirms that SERT expressed in adrenal chromaffin cells is essential for maintaining wild-type levels of 5-HT and provides a powerful tool to help dissect the role of SERT in the sympathetic stress response.
Project description:Serotonin syndrome is a predictable life-threatening condition that is caused by serotonergic stimulation of the central and peripheral nervous systems. A patient's genetic profile can amplify exposure risk as many serotonergic drugs are metabolized by CYP450 enzymes, and these enzymes may be altered in functionality. We report a case of an elderly man who presented with serotonin syndrome after a dose change in valproic acid 5 weeks prior. His medication list consisted of low-dose serotonergic agents, which is unusual as most cases of serotonin syndrome involve higher doses. A review of his pharmacogenetic profile is presented to retrospectively evaluate the additive risk for serotonin syndrome and implications on resuming serotonergic agents.
Project description:Serotonin transporter, SERT (SLC64A for solute carrier family 6, member A4), is a twelve transmembrane domain (TMDs) protein that assumes the uptake of serotonin (5-HT) through dissipation of the Na+ gradient established by the electrogenic pump Na/K ATPase. Abnormalities in 5-HT level and signaling have been associated with various disorders of the central nervous system (CNS) such as depression, obsessive-compulsive disorder, anxiety disorders, and autism spectrum disorder. Since the 50s, SERT has raised a lot of interest as being the target of a class of antidepressants, the Serotonin Selective Reuptake Inhibitors (SSRIs), used in clinics to combat depressive states. Because of the refractoriness of two-third of patients to SSRI treatment, a better understanding of the mechanisms regulating SERT functions is of priority. Here, we review how genetic and epigenetic regulations, post-translational modifications of SERT, and specific interactions between SERT and a set of diverse partners influence SERT expression, trafficking to and away from the plasma membrane and activity, in connection with the neuronal adaptive cell response to SSRI antidepressants.
Project description:Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.
Project description:Serotonin is a ubiquitous chemical transmitter with particularly important roles in the gastrointestinal, cardiovascular and central nervous systems. Modulation of serotonergic signaling occurs, in part, by uptake of the transmitter by the serotonin transporter (SERT). In the brain, SERT is the target for numerous antidepressants including tricyclic antidepressants and selective serotonin reuptake inhibitors (SSRIs). Despite the importance of SERT in human physiology, biochemical, biophysical and high-resolution structural studies have been hampered due to the instability of SERT in detergent micelles. To identify a human SERT (hSERT) construct suitable for detailed biochemical and structural studies, we developed an efficient thermostability screening protocol and rapidly screened 219 mutations for thermostabilization of hSERT in complex with the SSRI paroxetine. We discovered three mutations-Y110A, I291A and T439S -that, when combined into a single construct, deemed TS3, yielded a hSERT variant with an apparent melting temperature (Tm) 19°C greater than that of the wild-type transporter, albeit with a loss of transport activity. Further investigation yielded a double mutant-I291A and T439S-defined as TS2, with a 12°C increase in Tm and retention of robust transport activity. Both TS2 and TS3 were more stable in short-chain detergents in comparison to the wild-type transporter. This thermostability screening protocol, as well as the specific hSERT variants, will prove useful in studies of other integral membrane receptors and transporters and in the investigation of structure and function relationships in hSERT.
Project description:Personalized medicine - the adaptation of therapies based on an individual's genetic and molecular profile - is one of the most promising aspects of modern medicine. The identification of the relation between genotype and drug response, including both the therapeutic effect and side effect profile, is expected to deeply affect medical practice. In this paper, we review the current knowledge about the genes related to antidepressant treatment response and provide methodologic proposals for future studies. We have mainly focused on genes associated with pharmacodynamics, for which a list of promising genes has been identified despite some inconsistency across studies. We have also synthesized the main results for pharmacokinetic genes, although so far they seem less relevant than those for pharmaco dynamic genes. We discuss possible reasons for these inconsistent findings and propose new study designs.
Project description:Depression is a common mental disorder. The standard medical treatment is the selective serotonin reuptake inhibitors (SSRIs). All characterized SSRIs are competitive inhibitors of the serotonin transporter (SERT). A non-competitive inhibitor may produce a more favorable therapeutic profile. Vilazodone is an antidepressant with limited information on its molecular interactions with SERT. Here we use molecular pharmacology and cryo-EM structural elucidation to characterize vilazodone binding to SERT. We find that it exhibits non-competitive inhibition of serotonin uptake and impedes dissociation of [3H]imipramine at low nanomolar concentrations. Our SERT structure with bound imipramine and vilazodone reveals a unique binding pocket for vilazodone, expanding the boundaries of the extracellular vestibule. Characterization of the binding site is substantiated with molecular dynamics simulations and systematic mutagenesis of interacting residues resulting in decreased vilazodone binding to the allosteric site. Our findings underline the versatility of SERT allosteric ligands and describe the unique binding characteristics of vilazodone.
Project description:Depression is an independent risk factor of cardiovascular disease morbidity. Serotonin is a key neurotransmitter in depressive pathology, contained within platelets, and is a weak activator of platelets. Our study assessed the link between platelet reactivity traits, depression, and antidepressant (AD) use in a large population sample. Our study was conducted in the Framingham Heart Study (n = 3,140), and AD use (n = 563) and aspirin use (n = 681) were noted. Depression was measured using the Center for Epidemiological Studies-Depression (CES-D) survey. Platelet reactivity traits were measured across multiple agonists using five distinct assays. We utilized a linear mixed effects model to test associations between platelet traits and depression, adjusting for age, sex, aspirin use, and AD use. Similarly, we analyzed trait associations with any AD use, serotonin-affecting ADs, and norepinephrine-affecting ADs, respectively. There were strong associations with reduced platelet function and AD use, particularly with serotonin-affecting medications. This included lower Optimul epinephrine maximal aggregation (P = 4.87E-13), higher U46619 half maximal effective concentration (P = 9.09E-11), lower light transmission aggregometry (LTA) adenosine diphosphate (ADP) final aggregation (P = 1.03E-05), and higher LTA ADP disaggregation (P = 2.28E-05). We found similar associations with serotonin-affecting ADs in an aspirin-taking subset of our sample. There were no significant associations between platelet traits and depression. In the largest study yet of AD use and platelet function we show that antidepressants, particularly serotonin-affecting ADs, inhibit platelets. We did not find evidence that depressive symptomatology in the absence of medication is associated with altered platelet function. Our results are consistent with AD use leading to platelet serotonin depletions, decreased stability of platelet aggregates, and overall decreased aggregation to multiple agonists, which may be a mechanism by which ADs increase risk of bleeding and decrease risk of thrombosis.
Project description:Pharmacotherapy for neuropsychiatric disorders, such as anxiety and depression, has been characterized by significant inter-individual variability in drug response and the development of side effects. Pharmacogenetics, as a key part of personalized medicine, aims to optimize therapy according to a patient's individual genetic signature by targeting genetic variations involved in pharmacokinetic or pharmacodynamic processes. Pharmacokinetic variability refers to variations in a drug's absorption, distribution, metabolism, and elimination, whereas pharmacodynamic variability results from variable interactions of an active drug with its target molecules. Pharmacogenetic research on depression and anxiety has focused on genetic polymorphisms affecting metabolizing cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes, P-glycoprotein ATP-binding cassette (ABC) transporters, and monoamine and γ-aminobutyric acid (GABA) metabolic enzymes, transporters, and receptors. Recent pharmacogenetic studies have revealed that more efficient and safer treatments with antidepressants and anxiolytics could be achieved through genotype-guided decisions. However, because pharmacogenetics cannot explain all observed heritable variations in drug response, an emerging field of pharmacoepigenetics investigates how epigenetic mechanisms, which modify gene expression without altering the genetic code, might influence individual responses to drugs. By understanding the epi(genetic) variability of a patient's response to pharmacotherapy, clinicians could select more effective drugs while minimizing the likelihood of adverse reactions and therefore improve the quality of treatment.
Project description:BACKGROUND Major depressive disorder (MDD) is a chronic, life-threatening, highly disabling disease. Standardized treatment with fewer adverse effects, quick onset, and long-term maintenance of the effects of brief treatment for MDD is always being pursued. Long non-coding RNAs (lncRNAs) are highly expressed in the central nervous system and are involved in the occurrence and development of neurodegenerative and psychiatric diseases. This study aimed to investigate whether the overexpression and interference of 3 differentially down-regulated lncRNAs (NONHSAT142707, NONHSAG045500, and ENST00000517573) in MDD can affect the expression of central neurotransmitter serotonin (5-hydroxytryptamine) transporter (SERT) in vitro. MATERIAL AND METHODS First, we synthesized and validated the effect of 3 lncRNA plasmids and small interfering RNAs (siRNAs); next, we transfected the plasmids and siRNAs that caused significant overexpression or interference in SK-N-SH cells, and tested the expression of SERT by qRT-PCR. RESULTS The results showed that 3 lncRNA plasmids and siRNAs2 caused overexpression and interference, respectively. Only the overexpression of NONHSAG045500 could significantly inhibit the expression of SERT; interference with NONHSAG045500 could significantly strengthen the expression of SERT. CONCLUSIONS This study indicated that the expression of SERT could be regulated by up-regulating or down-regulating NONHSAG045500 expression and suggested that NONHSAG045500 could potentially be established as a new therapeutic target of MDD. Future work may be needed to definitively determine the correlation between NONHSAG045500 and SERT in vivo.