Project description:IntroductionTherapeutic options for diffuse malignant peritoneal mesothelioma (DMPM) are limited to surgery and locoregional chemotherapy. Despite improvements in survival rates, patients eventually succumb to disease progression. We investigated splicing deregulation both as molecular prognostic factor and potential novel target in DMPM, while we tested modulators of SF3b complex for antitumor activity.MethodsTissue-microarrays of 64 DMPM specimens were subjected to immunohistochemical assessment of SF3B1 expression and correlation to clinical outcome. Two primary cell cultures were used for gene expression profiling and in vitro screening of SF3b modulators. Drug-induced splicing alterations affecting downstream cellular pathways were detected through RNA sequencing. Ultimately, we established bioluminescent orthotopic mouse models to test the efficacy of splicing modulation in vivo.ResultsSpliceosomal genes are differentially upregulated in DMPM cells compared to normal tissues and high expression of SF3B1 correlated with poor clinical outcome in univariate and multivariate analysis. SF3b modulators (Pladienolide-B, E7107, Meayamycin-B) showed potent cytotoxic activity in vitro with IC50 values in the low nanomolar range. Differential splicing analysis of Pladienolide-B-treated cells revealed abundant alterations of transcripts involved in cell cycle, apoptosis and other oncogenic pathways. This was validated by RT-PCR and functional assays. E7107 demonstrated remarkable in vivo antitumor efficacy, with significant improvement of survival rates compared to vehicle-treated controls.ConclusionsSF3B1 emerged as a novel potential prognostic factor in DMPM. Splicing modulators markedly impair cancer cell viability, resulting also in potent antitumor activity in vivo. Our data designate splicing as a promising therapeutic target in DMPM.
Project description:Malignant Peritoneal Mesothelioma (PeM) is a rare but frequently fatal cancer that originates from the peritoneal lining of the abdomen. Standard treatment of PeM is limited to cytoreductive surgery and/or chemotherapy, and no targeted therapies for PeM yet exist. This study performs comprehensive integrative analysis of genome, transcriptome, and proteome of treatment-naïve PeM tumors with the aim of identifying mesothelioma-related molecular alterations and potentially identifying novel treatment strategies.
Project description:Human malignancies develop via a multi-step that involves the accumulation of several key gene alterations with associated genetic and epigenetic events. Although malignant mesothelioma (MM) has been demonstrated to be clearly correlated with asbestos exposure, it remains poorly understood how asbestos fibers confer key gene alterations and induce cellular transformation in normal mesothelial cells, which results in the acquisition of malignant phenotypes, including deregulated cell proliferation and invasion. Malignant mesothelioma presents with the frequent inactivation of tumor suppressor genes of p16(INK4a)/p14(ARF) on chromosome 9p21 and neurofibromatosis type 2 (NF2) on chromosome 22q12, with the latter being responsible for the NF2 familial cancer syndrome. In contrast, MM shows infrequent mutation of the p53 gene, which is one of the most frequently mutated tumor suppressor genes in human malignancies. Genetic abnormalities of oncogenes have also been studied in MM, but no frequent mutations have been identified, including the epidermal growth factor receptor (EGFR) and K-RAS genes. Recent studies have suggested the activation of other receptor tyrosine kinases, including Met, and the deregulations of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)-AKT signaling cascades, although the alterations responsible for their activation are still not clear. Thus, further genome-wide studies of genetic and epigenetic alterations as well as detailed analyses of deregulated signaling cascades in MM are necessary to determine the molecular mechanisms of MM, which would also provide some clues for establishing a new molecular target therapy for MM.
Project description:Diffuse malignant peritoneal mesothelioma (DMPM) is a rapidly lethal malignancy. The comprehension of the molecular features of DMPM is of utmost importance for the fruitful management of the disease, especially in patients who fail standard treatments and have a poor prognosis due to the lack of effective alternative therapeutic options.
Project description:Diffuse malignant peritoneal mesothelioma (DMPM) is a rapidly lethal malignancy. The comprehension of the molecular and cellular features of DMPM is of utmost importance for the fruitful management of the disease, especially in patients who fail standard treatments and have a poor prognosis due to the lack of effective alternative therapeutic options. In this context, we previously found that telomerase activity (TA), which accounts for the limitless proliferative potential of cancer cells, is prognostic for disease relapse and cancer-related death in DMPM patients. Consequently, the identification of factors involved in telomerase activation/regulation may pave the way towards the development of novel therapeutic interventions for the disease. In the present study, miRNA expression profiling was carried out in a series of DMPM tissue specimens, previously characterized for the occurrence of TA, in order to possibly identify miRNAs that may play a role in the establishment/regulation of such a telomere maintenance mechanism in this malignancy and consequently furnish a biological rationale for the possible future development of miRNA-based telomerase-targeted therapeutic approaches.
Project description:Mesothelioma is a malignancy of serosal membranes. Parietal pleura is the most common site, with peritoneum being the second most frequent location. Malignant peritoneal mesothelioma (MPM) is a rare and aggressive disease. The prognosis is often very poor with median overall survival ranging from 6 to 18 months in patients who are not candidates for cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) due to non-resectable disease or comorbid conditions. For patients with resectable disease, CRS and HIPEC have become the standard of care. However, for patients with unresectable malignant mesothelioma there is unfortunately no effective systemic treatment beyond the first line. Based on the results of a recent phase II trial, lurbinectedin has clinical activity and acceptable toxicity in the second- and third-line treatment of malignant pleural mesothelioma. However, until present, no data have been available for patients with MPM and for patients who become refractory after multiple treatment lines. We report on two patients with metastatic MPM who achieved durable disease control of 10+ and 8 months with lurbinectedin in the fourth and fifth treatment line, respectively.
Project description:UnlabelledDiffuse malignant mesothelioma is an aggressive tumor which displays a median survival of 11.2 months and a 5-year survival of less than 5% emphasizing the need for more effective treatments. This study uses an orthotopic model of malignant mesothelioma established in syngeneic, immunocompetent C57Bl/6 mice which produce malignant ascites and solid tumors that accurately replicate the histopathology of the human disease. Host stromal and immune cell accumulation within malignant ascites and solid tumors was determined using immunofluorescent labeling with confocal microscopy and fluorescence-activated cell sorting. An expression profile of cytokines and chemokines was produced using quantitative real-time PCR arrays. Tumor spheroids and solid tumors show progressive growth and infiltration with host stromal and immune cells including macrophages, endothelial cells, CD4(+) and CD8(+) lymphocytes, and a novel cell type, myeloid derived suppressor cells (MDSCs). The kinetics of host cell accumulation and inflammatory mediator expression within the tumor ascites divides tumor progression into two distinct phases. The first phase is characterized by progressive macrophage and T lymphocyte recruitment, with a cytokine profile consistent with regulatory T lymphocytes differentiation and suppression of T cell function. The second phase is characterized by decreased expression of macrophage chemotactic and T-cell regulating factors, an increase in MDSCs, and increased expression of several cytokines which stimulate differentiation of MDSCs. This cellular and expression profile suggests a mechanism by which host immune cells promote diffuse malignant mesothelioma progression.Electronic supplementary materialThe online version of this article (doi:10.1007/s12307-010-0048-1) contains supplementary material, which is available to authorized users.
Project description:BackgroundThis review systematically summarizes gene biology features and protein structure of nucleoplasmin2 (NPM2) and the relationship between NPM2 and malignant peritoneal mesothelioma (MPM), in order to explore the molecular pathological mechanism of MPM and explore new therapeutic targets.MethodsNCBI PubMed database was used for the literature search. NCBI Gene and Protein databases, Ensembl Genome Browser, UniProt, and RCSB PDB database were used for gene and protein review. Three online tools (Consurf, DoGSiteScorer, and ZdockServer), the GEPIA database, and the Cancer Genome Atlas were used to analyze bioinformatics characteristics for NPM2 protein.ResultsThe main structural domains of NPM2 protein include the N-terminal core region, acidic region, and motif and disordered region. The N-terminal core region, involved in histone binding, is the most conserved domain in the nucleoplasmin (NPM) family. NPM2 with a large acidic tract in its C-terminal tail (NPM2-A2) is able to bind histones and form large complexes. Bioinformatics results indicated that NPM2 expression was correlated with the pathology of multiple tumors. Among mesothelioma patients, 5-year survival of patients with low-NPM2-expression was significantly higher than that of the high-NPM2-expression patients. NPM2 can facilitate the formation of histone deacetylation. NPM2 may promote histone deacetylation and inhibit the related-gene transcription, thus leading to abnormal proliferation, invasion, and metastasis of MPM.ConclusionNPM2 may play a key role in the development and progression of MPM.
Project description:Diffuse pulmonary metastasis secondary to primary peritoneal malignant mesothelioma is rarely reported in the literature. In this report we describe a 59-year-old Caucasian women with no known previous asbestos exposure presenting with bilateral diffuse pulmonary opacities in association with primary malignant peritoneal mesothelioma. The diagnosis was confirmed by ultrasound guided abdominal and bronchoscopy, trans-bronchial lung biopsy. The biopsy demonstrated positive staining with AE1/3, CK7, CK5/6, WT1, calretinin and D2 40. The cells were negative for BerEP4, PAX8, CA125, ER, CD34, ERG, P63, P40, Melan A, Gata3 and mammaglobin. The morphology and immunohistochemical profile supported a diagnosis of epithelioid malignant mesothelioma.
Project description:ImportanceDiffuse malignant peritoneal mesothelioma (DMPM) represents a rare and clinically distinct entity among malignant mesotheliomas. Pembrolizumab has activity in diffuse pleural mesothelioma but limited data are available for DMPM; thus, DMPM-specific outcome data are needed.ObjectiveTo evaluate outcomes after the initiation of pembrolizumab monotherapy in the treatment of adults with DMPM.Design, setting, and participantsThis retrospective cohort study was conducted in 2 tertiary care academic cancer centers (University of Pennsylvania Hospital Abramson Cancer Center and Memorial Sloan Kettering Cancer Center). All patients with DMPM treated between January 1, 2015, and September 1, 2019, were retrospectively identified and followed until January 1, 2021. Statistical analysis was performed between September 2021 and February 2022.ExposuresPembrolizumab (200 mg or 2 mg/kg every 21 days).Main outcomes and measuresMedian progression-free survival (PFS) and median overall survival (OS) were assessed using Kaplan-Meier estimates. The best overall response was determined using RECIST (Response Evaluation Criteria in Solid Tumors) criteria, version 1.1. The association of disease characteristics with partial response was evaluated using the Fisher exact test.ResultsThis study included 24 patients with DMPM who received pembrolizumab monotherapy. Patients had a median age of 62 years (IQR, 52.4-70.6 years); 14 (58.3%) were women, 18 (75.0%) had epithelioid histology, and most (19 [79.2%]) were White. A total of 23 patients (95.8%) received systemic chemotherapy prior to pembrolizumab, and the median number of lines of prior therapy was 2 (range, 0-6 lines). Of the 17 patients who underwent programmed death ligand 1 (PD-L1) testing, 6 (35.3%) had positive tumor PD-L1 expression (range, 1.0%-80.0%). Of the 19 evaluable patients, 4 (21.0%) had a partial response (overall response rate, 21.1% [95% CI, 6.1%-46.6%]), 10 (52.6%) had stable disease, and 5 (26.3%) had progressive disease (5 of 24 patients [20.8%] were lost to follow-up). There was no association between a partial response and the presence of a BAP1 alteration, PD-L1 positivity, or nonepithelioid histology. With a median follow-up of 29.2 (95% CI, 19.3 to not available [NA]) months, the median PFS was 4.9 (95% CI, 2.8-13.3) months and the median OS was 20.9 (95% CI, 10.0 to NA) months from pembrolizumab initiation. Three patients (12.5%) experienced PFS of more than 2 years. Among patients with nonepithelioid vs epithelioid histology, there was a numeric advantage in median PFS (11.5 [95% CI, 2.8 to NA] vs 4.0 [95% CI, 2.8-8.8] months) and median OS (31.8 [95% CI, 8.3 to NA] vs 17.5 [95% CI, 10.0 to NA] months); however, this did not reach statistical significance.Conclusions and relevanceThe results of this retrospective dual-center cohort study of patients with DMPM suggest that pembrolizumab had clinical activity regardless of PD-L1 status or histology, although patients with nonepithelioid histology may have experienced additional clinical benefit. The partial response rate of 21.0% and median OS of 20.9 months in this cohort with 75.0% epithelioid histology warrants further investigation to identify those most likely to respond to immunotherapy.