Project description:IntroductionThe subventricular zone (SVZ) in the brain is associated with gliomagenesis and resistance to treatment in glioblastoma. In this study, we investigate the prognostic role and biological characteristics of subventricular zone (SVZ) involvement in glioblastoma.MethodsWe analyzed T1-weighted, gadolinium-enhanced MR images of a retrospective cohort of 647 primary glioblastoma patients diagnosed between 2005-2013, and performed a multivariable Cox regression analysis to adjust the prognostic effect of SVZ involvement for clinical patient- and tumor-related factors. Protein expression patterns of a.o. markers of neural stem cellness (CD133 and GFAP-δ) and (epithelial-) mesenchymal transition (NF-κB, C/EBP-β and STAT3) were determined with immunohistochemistry on tissue microarrays containing 220 of the tumors. Molecular classification and mRNA expression-based gene set enrichment analyses, miRNA expression and SNP copy number analyses were performed on fresh frozen tissue obtained from 76 tumors. Confirmatory analyses were performed on glioblastoma TCGA/TCIA data.ResultsInvolvement of the SVZ was a significant adverse prognostic factor in glioblastoma, independent of age, KPS, surgery type and postoperative treatment. Tumor volume and postoperative complications did not explain this prognostic effect. SVZ contact was associated with increased nuclear expression of the (epithelial-) mesenchymal transition markers C/EBP-β and phospho-STAT3. SVZ contact was not associated with molecular subtype, distinct gene expression patterns, or markers of stem cellness. Our main findings were confirmed in a cohort of 229 TCGA/TCIA glioblastomas.ConclusionIn conclusion, involvement of the SVZ is an independent prognostic factor in glioblastoma, and associates with increased expression of key markers of (epithelial-) mesenchymal transformation, but does not correlate with stem cellness, molecular subtype, or specific (mi)RNA expression patterns.
Project description:BackgroundPatients with glioblastoma (GBM) have an overall median survival of 15 months despite multimodal therapy. These catastrophic survival rates are to be correlated to systematic relapses that might arise from remaining glioblastoma stem cells (GSCs) left behind after surgery. In this line, it has recently been demonstrated that GSCs are able to escape the tumor mass and preferentially colonize the adult subventricular zone (SVZ). At a distance from the initial tumor site, these GSCs might therefore represent a high-quality model of clinical resilience to therapy and cancer relapses as they specifically retain tumor-initiating abilities.MethodWhile relying on recent findings that have validated the existence of GSCs in the human SVZ, we questioned the role of the SVZ niche as a potential GSC reservoir involved in therapeutic failure.ResultsOur results demonstrate that (i) GSCs located in the SVZ are specifically resistant to radiation in vivo, (ii) these cells display enhanced mesenchymal roots that are known to be associated with cancer radioresistance, (iii) these mesenchymal traits are specifically upregulated by CXCL12 (stromal cell-derived factor-1) both in vitro and in the SVZ environment, (iv) the amount of SVZ-released CXCL12 mediates GBM resistance to radiation in vitro, and (v) interferes with the CXCL12/CXCR4 signalling system, allowing weakening of the tumor mesenchymal roots and radiosensitizing SVZ-nested GBM cells.ConclusionTogether, these data provide evidence on how the adult SVZ environment, through the release of CXCL12, supports GBM therapeutic failure and potential tumor relapse.
Project description:Glioblastoma multiforme (GBM), the most malignant of all gliomas is characterized by a high degree of heterogeneity and poor response to treatment. The sub-ventricular zone (SVZ) is the major site of neurogenesis in the brain and is rich in neural stem cells. Based on the proximity of the GBM tumors to the SVZ, the tumors can be further classified into SVZ+ and SVZ-. The tumors located in close contact with the SVZ are classified as SVZ+, while the tumors located distantly from the SVZ are classified as SVZ-. To gain an insight into the increased aggressiveness of SVZ+ over SVZ- tumors, we have used proteomics techniques like 2D-DIGE and LC-MS/MS to investigate any possible proteomic differences between the two subtypes. Serum proteomic analysis revealed significant alterations of various acute phase proteins and lipid carrying proteins, while tissue proteomic analysis revealed significant alterations in cytoskeletal, lipid binding, chaperone and cell cycle regulating proteins, which are already known to be associated with disease pathobiology. These findings provide cues to molecular basis behind increased aggressiveness of SVZ+ GBM tumors over SVZ- GBM tumors and plausible therapeutic targets to improve treatment modalities for these highly invasive tumors.
Project description:PurposeGlioblastomas (GBM) with subventricular zone (SVZ) contact have previously been associated with a specific epigenetic fingerprint. We aim to validate a reported bulk methylation signature to determine SVZ contact.MethodsMethylation array analysis was performed on IDHwt GBM patients treated at our institution. The v11b4 classifier was used to ensure the inclusion of only receptor tyrosine kinase (RTK) I, II, and mesenchymal (MES) subtypes. Methylation-based assignment (SVZM ±) was performed using hierarchical cluster analysis. Magnetic resonance imaging (MRI) (T1ce) was independently reviewed for SVZ contact by three experienced readers.ResultsSixty-five of 70 samples were classified as RTK I, II, and MES. Full T1ce MRI-based rater consensus was observed in 54 cases, which were retained for further analysis. Epigenetic SVZM classification and SVZ were strongly associated (OR: 15.0, p = 0.003). Thirteen of fourteen differential CpGs were located in the previously described differentially methylated LRBA/MAB21L2 locus. SVZ + tumors were linked to shorter OS (hazard ratio (HR): 3.80, p = 0.02) than SVZM + at earlier time points (time-dependency of SVZM, p < 0.05). Considering the SVZ consensus as the ground truth, SVZM classification yields a sensitivity of 96.6%, specificity of 36.0%, positive predictive value (PPV) of 63.6%, and negative predictive value (NPV) of 90.0%.ConclusionHerein, we validated the specific epigenetic signature in GBM in the vicinity of the SVZ and highlighted the importance of methylation of a part of the LRBA/MAB21L2 gene locus. Whether SVZM can replace MRI-based SVZ assignment as a prognostic and diagnostic tool will require prospective studies of large, homogeneous cohorts.
Project description:Glioblastoma (GBM) is the most aggressive and common type of primary malignant brain cancer in adults. GBM often recurs locally near the resection cavity (RC) following the surgical removal of primary tumors. Recent research has reported that neural stem cells (NSCs) in the subventricular zone (SVZ) harboring cancer-driving mutations serve as the cells of origin for human GBM. However, the pathological role of tumor-initiating NSCs in the SVZ in tumor recurrence remains to be elucidated. Here, we explore the potential contribution of mutation-harboring NSCs in the SVZ to tumor recurrence around the RC following surgical resection. Our hypothesis emerged from performing deep sequencing of longitudinal tissues from 10 patients with GBM, including (i) tumor-free SVZ tissue, (ii) primary tumor tissue, (iii) recurrent tumor tissue, and (iv) blood. As a result of this sequencing, we observed evidence suggesting that recurrent tumors show genetic links to the SVZ in 60% (6/10) of patients, which are distinct from the primary tumors. Using a genome-edited mouse model, we further identified that mutation-harboring NSCs appeared to migrate to the RC through the aberrant growth of oligodendrocyte progenitor cells, potentially contributing to the reconstruction of high-grade malignant gliomas in the RC. This process was associated with the CXCR4/CXCL12 axis, as supported by RNA sequencing data from human recurrent GBM. Taken together, our findings suggest that NSCs in human SVZ tissue may play a role in GBM recurrence, potentially highlighting a novel distant contributor of recurrence.
Project description:Glioblastoma (GBM) is both the most common and the most devastating primary cancer of the central nervous system, with an expected overall survival in most patients of about 14 months. Despite extensive research, outcomes for GBM have been largely unchanged since the introduction of temozolomide in 2005. We believe that in order to achieve a breakthrough in therapeutic management, we must begin to identify subtypes of GBM, and tailor treatment to best target a particular tumor's vulnerabilities. Our group has recently produced an examination of the clinical outcomes of radiation therapy directed at tumors that contact the subventricular zone (SVZ), the 3-5 mm lateral border of the lateral ventricles that contains the largest collection of neural stem cells in the adult brain. We find that SVZ-associated tumors have worse progression free and overall survival than tumors that do not contact the SVZ, and that they exhibit unique recurrence and migration patterns. However, with minimal basic science research into SVZ-associated GBM, it is currently impossible to determine if the clinicobehavioral uniqueness of this group of tumors represents a true disease subtype from a genetic perspective. We believe that further translational research into SVZ-associated GBM is needed to establish a therapeutic profile.
Project description:BackgroundGlioblastoma (GBM) is the most aggressive and common type of primary brain tumor in adults. Tumor location plays a role in patient prognosis, with tumors proximal to the lateral ventricles (LVs) presenting with worse overall survival, increased expression of stem cell genes, and increased incidence of distal tumor recurrence. This may be due in part to interaction of GBM with factors of the subventricular zone (SVZ), including those contained within the cerebrospinal fluid (CSF). However, direct interaction of GBM tumors with CSF has not been proved and would be hindered in the presence of an intact ependymal cell layer.MethodsHere, we investigate the ependymal cell barrier and its derived extracellular matrix (ECM) fractones in the vicinity of a GBM tumor. Patient-derived GBM cells were orthotopically implanted into immunosuppressed athymic mice in locations distal and proximal to the LV. A PBS vehicle injection in the proximal location was included as a control. At four weeks post-xenograft, brain tissue was examined for alterations in ependymal cell health via immunohistochemistry, scanning electron microscopy, and transmission electron microscopy.ResultsWe identified local invading GBM cells within the LV wall and increased influx of CSF into the LV-proximal GBM tumor bulk compared to controls. In addition to the physical disruption of the ependymal cell barrier, we also identified increased signs of compromised ependymal cell health in LV-proximal tumor-bearing mice. These signs include increased accumulation of lipid droplets, decreased cilia length and number, and decreased expression of cell channel proteins. We additionally identified elevated numbers of small fractones in the SVZ within this group, suggesting increased indirect CSF-contained molecule signaling to tumor cells.ConclusionsOur data is the first to show that LV-proximal GBMs physically disrupt the ependymal cell barrier in animal models, resulting in disruptions in ependymal cell biology and increased CSF interaction with the tumor bulk. These findings point to ependymal cell health and CSF-contained molecules as potential axes for therapeutic targeting in the treatment of GBM.
Project description:Background: Studies have suggested that glioblastoma (GBM) cells originate from the subventricular zone (SVZ) and that GBM contact with the SVZ correlated with worse prognosis and higher recurrence. However, research on differentially expressed genes (DEGs) between GBM and the SVZ is lacking. Methods: We performed deep RNA sequencing on seven SVZ-involved GBMs and paired tumor-free SVZ tissues. DEGs and enrichment were assessed. We obtained GBM patient expression profiles and clinical data from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. The least absolute shrinkage and selection operator Cox regression model was utilized to construct a multigene signature in the CGGA cohort. GBM patient data from TCGA cohort were used for validation. Results: We identified 137 (97 up- and 40 down-regulated) DEGs between GBM and healthy SVZ samples. Enrichment analysis revealed that DEGs were mainly enriched in immune-related terms, including humoral immune response regulation, T cell differentiation, and response to tumor necrosis factor, and the MAPK, cAMP, PPAR, PI3K-Akt, and NF-κb signaling pathways. An eight-gene (BCAT1, HPX, NNMT, TBX5, RAB42, TNFRSF19, C16orf86, and TRPC5) signature was constructed. GBM patients were stratified into two risk groups. High-risk patients showed significantly reduced overall survival compared with low-risk patients. Univariate and multivariate regression analyses indicated that the risk score level represented an independent prognostic factor. High risk score of GBM patients negatively correlated with 1p19q codeletion and IDH1 mutation. Immune infiltration analysis further showed that the high risk score was negatively correlated with activated NK cell and monocyte counts, but positively correlated with macrophage and activated dendritic cell counts and higher PD-L1 mRNA expression. Conclusion: Here, a novel gene signature based on DEGs between GBM and healthy SVZ was developed for determining GBM patient prognosis. Targeting these genes may be a therapeutic strategy for GBM.
Project description:Glioblastoma multiforme (GBM), the most frequently occurring malignant brain tumor in adults, remains mostly untreatable. Because of the heterogeneity of invasive gliomas and drug resistance associated with the tumor microenvironment, the prognosis is poor, and the survival rate of patients is low. Communication between GBMs and non-glioma cells in the tumor microenvironment plays a vital role in tumor growth and recurrence. Emerging data have suggested that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells-of-origin of gliomas, and SVZ NSC involvement is associated with the progression and recurrence of GBM. This review highlights the interaction between SVZ NSCs and gliomas, summarizes current findings on the crosstalk between gliomas and other non-glioma cells, and describes the links between SVZ NSCs and gliomas. We also discuss the role and mechanism of SVZ NSCs in glioblastoma, as well as the interventions targeting the SVZ and their therapeutic implications in glioblastoma. Taken together, understanding the biological mechanism of glioma-NSC interactions can lead to new therapeutic strategies for GBM.
Project description:Glioblastoma usually recurs after therapy consisting of surgery, radiotherapy, and chemotherapy. Recurrence is at least partly caused by glioblastoma stem cells (GSCs) that are maintained in intratumoral hypoxic peri-arteriolar microenvironments, or niches, in a slowly dividing state that renders GSCs resistant to radiotherapy and chemotherapy. Because the subventricular zone (SVZ) is a major niche for neural stem cells (NSCs) in the brain, we investigated whether GSCs are present in the SVZ at distance from the glioblastoma tumor. We characterized the SVZ of brains of seven glioblastoma patients using fluorescence immunohistochemistry and image analysis. NSCs were identified by CD133 and SOX2 but not CD9 expression, whereas GSCs were positive for all three biomarkers. NSCs were present in all seven samples and GSCs in six out of seven samples. The SVZ in all samples were hypoxic and expressed the same relevant chemokines and their receptors as GSC niches in glioblastoma tumors: stromal-derived factor-1α (SDF-1α), C-X-C receptor type 4 (CXCR4), osteopontin, and CD44. In conclusion, in glioblastoma patients, GSCs are present at distance from the glioblastoma tumor in the SVZ. These findings suggest that GSCs in the SVZ niche are protected against radiotherapy and chemotherapy and protected against surgical resection due to their distant localization and thus may contribute to tumor recurrence after therapy.