Ontology highlight
ABSTRACT: Background
The transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) signaling pathways are both constitutively activated in triple-negative breast cancer (TNBC). We are interested in isolating the naturally-derived small-molecule inhibitor that could simultaneously targeting TGFβ/BMP pathways and further studying its anti-proliferative/-metastatic effects as well as the underlying mechanisms in multiple tumor models.Methods
Multiple in vitro cell-based assays are used to examine the compound's inhibitory efficacy on TNBC cell growth, stemness, epithelial-mesenchymal transition (EMT), invasion and migration by targeting TGFβ/BMP signaling pathways. Transgenic breast cancer mouse model (MMTV-PyMT), subcutaneous xenograft and bone metastasis models are used to examine ZL170's effects on TNBC growth and metastasis potentials in vivo.Results
ZL170 dose-dependently inhibits cell proliferation, EMT, stemness, invasion and migration in vitro via specifically targeting canonical TGFβ/BMP-SMADs pathways in TNBC cells. The compound significantly hinders osteolytic bone metastasis and xenograft tumor growth without inflicting toxicity on vital organs of tumor-bearing nude mice. ZL170 strongly inhibits primary tumor growth and lung metastases in MMTV-PyMT transgenic mice. ZL170-treated tumors exhibit impaired TGFβ/BMP signaling pathways in both epithelial and stromal compartments, thereby creating a suppressive tumor microenvironment characterized by reduced extracellular matrix deposition and decreased infiltration of stromal cells.Conclusions
ZL170 inhibits tumor EMT, stemness and metastasis and could be further developed as a potent anti-metastatic agent used in combination with cytotoxic drugs for treatment of TNBC and other advanced metastatic cancers.
SUBMITTER: Di L
PROVIDER: S-EPMC6429712 | biostudies-literature | 2019 Mar
REPOSITORIES: biostudies-literature

Journal of experimental & clinical cancer research : CR 20190321 1
<h4>Background</h4>The transforming growth factor β (TGFβ) and bone morphogenetic protein (BMP) signaling pathways are both constitutively activated in triple-negative breast cancer (TNBC). We are interested in isolating the naturally-derived small-molecule inhibitor that could simultaneously targeting TGFβ/BMP pathways and further studying its anti-proliferative/-metastatic effects as well as the underlying mechanisms in multiple tumor models.<h4>Methods</h4>Multiple in vitro cell-based assays ...[more]