Unknown

Dataset Information

0

IGF-axis confers transformation and regeneration of fallopian tube fimbria epithelium upon ovulation.


ABSTRACT:

Background

The fallopian tube fimbria is regarded as the main tissue of origin and incessant ovulation as the main risk factor of ovarian high-grade serous carcinoma. Previously, we discovered the tumorigenesis activity of human ovulatory follicular fluid (FF) upon injection to the mammary fat pad of Trp53-null mice. We also found a mutagenesis activity of FF-ROS and a apoptosis-rescuing activity of Hb from retrograde menstruation. However, neither of them can explain the tumorigenesis activities of FF.

Methods

From two cohorts of ovulatory FF retrieved from IVF patients, the main growth factor responsible for the transformation of human fimbrial epithelial cells was identified. Mechanism of activation, ways of signal transduction of the growth factor, as well as the cellular and genetic phenotypes of the malignant transformation was characterized.

Findings

In this study, we showed that insulin-like growth factor (IGF)-axis proteins, including IGFBP-bound IGF2 as well as the IGFBP-lytic enzyme PAPP-A, are abundantly present in FF. Upon engaging with glycosaminoglycans on the membrane of fimbrial epithelial cells, PAPP-A cleaves IGFBPs and releases IGF2 to bind with IGF-1R. Through the IGF-1R/AKT/mTOR and IGF-1R/AKT/NANOG pathways, FF-IGF leads to stemness and survival, and in the case of TP53/Rb or TP53/CCNE1 loss, to clonal expansion and malignant transformation of fimbrial epithelial cells. By depleting each IGF axis component from FF, we proved that IGF2, IGFBP2/6, and PAPP-A are all essential and confer the majority of the transformation and regeneration activities.

Interpretation

This study revealed that the FF-IGF axis functions to regenerate tissue damage after ovulation and promote the transformation of fimbrial epithelial cells that have been initiated by p53- and Rb-pathway disruptions. FUND: The study was supported by grants of the Ministry of Science and Technology, Taiwan (MOST 106-2314-B-303-001-MY2; MOST 105-2314-B-303-017-MY2; MOST 107-2314-B-303-013-MY3), and Buddhist Tzu Chi General Hospital, Taiwan (TCMMP104-04-01).

SUBMITTER: Hsu CF 

PROVIDER: S-EPMC6441876 | biostudies-literature | 2019 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

IGF-axis confers transformation and regeneration of fallopian tube fimbria epithelium upon ovulation.

Hsu Che-Fang CF   Huang Hsuan-Shun HS   Chen Pao-Chu PC   Ding Dah-Ching DC   Chu Tang-Yuan TY  

EBioMedicine 20190307


<h4>Background</h4>The fallopian tube fimbria is regarded as the main tissue of origin and incessant ovulation as the main risk factor of ovarian high-grade serous carcinoma. Previously, we discovered the tumorigenesis activity of human ovulatory follicular fluid (FF) upon injection to the mammary fat pad of Trp53-null mice. We also found a mutagenesis activity of FF-ROS and a apoptosis-rescuing activity of Hb from retrograde menstruation. However, neither of them can explain the tumorigenesis a  ...[more]

Similar Datasets

2020-04-04 | GSE129348 | GEO
| PRJNA530990 | ENA
| S-EPMC11664131 | biostudies-literature
| S-EPMC5933088 | biostudies-literature
| S-EPMC4653021 | biostudies-literature
| S-EPMC3638747 | biostudies-literature
| S-EPMC4503498 | biostudies-literature
| S-EPMC3917315 | biostudies-literature
2022-06-20 | PXD023912 | Pride
| S-EPMC7565394 | biostudies-literature