Project description:Circadian dysregulation involves malignant tumor initiation and progression, but the understanding of circadian rhythm's roles in bladder cancer (BCa) remains insufficient. The circadian rhythm-related genes were collected and clustered based on the Cancer Genome Atlas (TCGA), and the clustering was significantly associated with the prognosis and risk clinicopathological features. Through genomic difference analysis and gene pairing, a circadian rhythm-related signature was successfully established. Kaplan-Meier survival analysis and time-dependent receiver operating curves displayed that the prognosis model was a reliable prognosis biomarker both in the training cohort (n = 396, P = 2.687e-10) and external validation cohort (n = 224, P = 1.45e-02). The patients with high risk have high immune infiltration and high expression of immune checkpoint genes, which partly account for the poor prognosis. TIDE algorithm and the validation in IMvigor210 cohort indicated that the risk signature was a promising marker for the immunotherapeutic response. The risk model could also predict the therapeutic response of cisplatin, which was validated in the Genomics of Drug Sensitivity in Cancer database (P = 0.0049), TCGA (P = 0.038), and T24 BCa cells treated with cisplatin. The functional enrichment showed the risk model was significantly correlated with some malignant phenotypes, such as angiogenesis, epithelial-mesenchymal transition, and KRAS signaling pathway. Totally, we proposed a novel circadian rhythm-related signature for prognosis evaluation, which also helped to predict the immune infiltration and cisplatin sensitivity in BCa.
Project description:BackgroundStudies have shown that more than half of the human genome expression is affected by circadian rhythms, which includes genes involved in cell cycle control, DNA repair and apoptosis that are critical in cancer biology. However, the roles of circadian rhythm-related genes (CRRGs) in cervical cancer (CC) and other common gynecologic cancers remain unclear.MethodsThe transcriptome data and clinical information related to CC and other common gynecologic cancers were extracted from the UCSC Xena and Gene Expression Omnibus (GEO) databases. In this study, the differentially expressed CRRGs of CC (target genes) were obtained, and the functional enrichment analysis of these target genes was performed by "clusterProfiler". Then, the biomarkers of CC were screened out to construct the survival risk model (risk score). Moreover, function and tumor micro-environment (TME) analyses in different risk groups were performed for further study of the potential mechanism of CC. Furthermore, the prognostic value and function analyses of biomarkers in three common gynecologic cancers were performed to reveal the potential agreement or heterogeneity regulations.ResultsA total of 19 target genes were associated with pyrimidine metabolism. The survival risk model was constructed with six biomarkers, including APOBEC3B, CDA, HELLS, RHOB, SLC15A3, and UPP1. Among these, APOBEC3B, HELLS, and SLC15A3 were identified as positive factors, while CDA, RHOB, and UPP1 were identified as negative factors in CC. It is notable that multiple immune-related signaling pathways were associated with the clinical risk of CC, and the immunotherapy sensitivity was worse in the high-risk group. In addition, we found that most of biomarkers had the prognostic values in other common gynecologic cancers. It was notable that the mechanisms by which these biomarkers influence gynecologic cancers were associated with extracellular matrix (ECM) receptor interaction, focal adhesion, etc.ConclusionThis study identified six circadian rhythm-related biomarkers, including APOBEC3B, CDA, HELLS, RHOB, SLC15A3, and UPP1, which were associated with the prognosis of CC. The mechanisms by which these biomarkers influence gynecologic cancers were associated with ECM receptor interaction, focal adhesion, and other functions. These findings might help to deepen the understanding of the agreement or heterogeneity of CRRGs in the pathological processes of common gynecologic cancers.
Project description:Skin cancer is the most common form of cancer in the United States. The main cause of this cancer is DNA damage induced by the UV component of sunlight. In humans and mice, UV damage is removed by the nucleotide excision repair system. Here, we report that a rate-limiting subunit of excision repair, the xeroderma pigmentosum group A (XPA) protein, and the excision repair rate exhibit daily rhythmicity in mouse skin, with a minimum in the morning and a maximum in the afternoon/evening. In parallel with the rhythmicity of repair rate, we find that mice exposed to UV radiation (UVR) at 4:00 AM display a decreased latency and about a fivefold increased multiplicity of skin cancer (invasive squamous cell carcinoma) than mice exposed to UVR at 4:00 PM. We conclude that time of day of exposure to UVR is a contributing factor to its carcinogenicity in mice, and possibly in humans.
Project description:Circadian rhythms are controlled at the cellular level by a molecular clock consisting of several genes/proteins engaged in a transcription-translation-degradation feedback loop. These core clock proteins regulate thousands of tissue-specific genes. Regarding circadian control in neoplastic tissues, reports to date have demonstrated anomalous circadian function in tumor models and cultured tumor cells. We have extended these studies by analyzing circadian rhythmicity genome-wide in a mouse model of liver cancer, in which mice treated with diethylnitrosamine at 15 days develop liver tumors by 6 months. We injected tumor-bearing and control tumor-free mice with cisplatin every 2 h over a 24-h cycle; 2 h after each injection mice were sacrificed and gene expression was measured by XR-Seq (excision repair sequencing) assay. Rhythmic expression of several core clock genes was observed in both healthy liver and tumor, with clock genes in tumor exhibiting typically robust amplitudes and a modest phase advance. Interestingly, although normal hepatic cells and hepatoma cancer cells expressed a comparable number of genes with circadian rhythmicity (clock-controlled genes), there was only about 10% overlap between the rhythmic genes in normal and cancerous cells. "Rhythmic in tumor only" genes exhibited peak expression times mainly in daytime hours, in contrast to the more common pre-dawn and pre-dusk expression times seen in healthy livers. Differential expression of genes in tumors and healthy livers across time may present an opportunity for more efficient anticancer drug treatment as a function of treatment time.
Project description:A common G risk allele in the melatonin receptor 1B (MTNR1B, rs10830963) gene has been associated with altered melatonin signaling and secretion. Given that melatonin possesses anticancerogenic properties, we hypothesized that breast and prostate cancer risks vary by rs10830963 genotype. A total of 216 702 participants from the UK Biobank without cancer at baseline (aged 56.4 ± 8.0 years, 50.79% female) were included. Multivariable Cox regression adjusting for known risk factors for breast or prostate cancer was used to estimate the independent effects of the rs10830963 SNP and chronotype on cancer risk. Over a median follow-up of 8 years, 2367 (2.15% of women) incidences of breast cancer and 2866 (2.69% of men) incidences of prostate cancer were documented in females and males, respectively. rs10830963 genotype is not associated with cancer risk independently (female Ptrend = .103, male Ptrend = .281). A late chronotype is associated with breast cancer risk in females (Ptrend = .014), but not prostate cancer risk in males (Ptrend = .915). Further stratification analysis revealed that the rs10830963 genotype is associated with a breast cancer risk in females with moderate evening chronotype (Ptrend = .001) and late chronotype is associated with breast cancer risk in females who carry rs10830963 G risk allele (Ptrend = .015). Our study suggests that having a late chronotype might increase the risk of breast cancer among females, while the effect of MTNR1B rs10830963 genotype on breast cancer risk is mediated by chronotype.
Project description:Background: Circadian dysregulation is linked to the onset and progression of cancer, but current knowledge of the role of circadian rhythm-related genes (CRRGs) in breast cancer (BC) is limited and incomplete. The purpose of this study was to investigate the potential role and immune-related prognostic significance of CRRGs in BC. Methods: The Cancer Genome Atlas breast cancer (TCGA-BRCA) genetic data were combined with 1369 CRRGs to create a model of BC prognosis-related CRRGs. To validate the model's predictive power in TCGA and other external datasets, the Kaplan-Meier survival curve and receptor operation characteristic curve were plotted. The relationship between CRRGs model and gene enrichment pathways, immune cell infiltration, and differences in patient response to immune checkpoint inhibitors (ICIs) therapy was then discussed. Results: A CRRG-based eighteen-gene model was developed that accurately predicted the survival time of BC patients. Based on this model, BC patients can be classified as high or low risk. The high-risk group has negative immune cell infiltration (such as macrophages M0 and M2) and a poor therapeutic response to ICIs due to lower immune checkpoint gene expression. Furthermore, TCF7 and IFNG were found to be strongly associated with immune checkpoints in CRRGs model. Conclusion: The 18 CRRGs may be useful in assessing the prognosis of BC patients, studying immune infiltration, and developing more effective immunotherapy strategies.
Project description:Crosstalk between cellular metabolism and circadian rhythms is a fundamental building block of multicellular life, and disruption of this reciprocal communication could be relevant to degenerative disease, including cancer. Here, we investigated whether maintenance of circadian rhythms depends upon specific metabolic pathways, particularly in the context of cancer. We found that in adult mouse fibroblasts, ATP levels were a major contributor to overall levels of a clock gene luciferase reporter, although not necessarily to the strength of circadian cycling. In contrast, we identified significant metabolic control of circadian function in an in vitro mouse model of pancreatic adenocarcinoma. Metabolic profiling of a library of congenic tumor cell clones revealed significant differences in levels of lactate, pyruvate, ATP, and other crucial metabolites that we used to identify candidate clones with which to generate circadian reporter lines. Despite the shared genetic background of the clones, we observed diverse circadian profiles among these lines that varied with their metabolic phenotype: the most hypometabolic line had the strongest circadian rhythms while the most hypermetabolic line had the weakest rhythms. Treatment of these tumor cell lines with bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist shown to increase OxPhos, decreased the amplitude of circadian oscillation in a subset of tumor cell lines. Strikingly, treatment with the Complex I antagonist rotenone enhanced circadian rhythms only in the tumor cell line in which glycolysis was also low, thereby establishing a hypometabolic state. We further analyzed metabolic and circadian phenotypes across a panel of human patient-derived melanoma cell lines and observed a significant negative association between metabolic activity and circadian cycling strength. Together, these findings suggest that metabolic heterogeneity in cancer directly contributes to circadian function, and that high levels of glycolysis or OxPhos independently disrupt circadian rhythms in these cells.
Project description:Objective: We aimed to explore the prognostic implication for non-small cell lung cancer (NSCLC) based on the expression profiles of circadian clock-related genes (CCRGs), and describe the changes of immune infiltration and cell functions of related to the circadian rhythm. Methods: Univariate and multivariate Cox proportional hazard regression were performed to determine a CCRGs risk-score significantly correlated with overall survival (OS) of the training set and validation set. GO, KEGG, and GSVA indicated discrepant changes in cellular processes and signaling pathways associated with these CCRGs. Immune cell infiltration and mutation rates were investigated by the online analysis platform and the algorithm provided by works of literature. Results: The signature-based on ten-gene signatures could independently predict the OS both in TCGA lung adenocarcinoma (p < 0.001, HR: 1.228, 95% CI: 1.158 to 1.302) and lung squamous cell carcinoma (p < 0.001, HR: 2.501, 95% CI: 2.010 to 3.117), respectively. The circadian oscillations driven by CCRGs could disturb the metabolism and cellular functions of cancer cells. The infiltration level of critical cells in specific anti-tumor immunity process was suppressed apparently. In contrast, the infiltrating of inflammatory cells and immune cells with negative regulatory effects were promoted in the high-risk group. CCRGs were evolutionarily conserved with low mutation rates, which brought difficulties to explore therapeutic targets. Conclusion: We identified and validated a circadian rhythm signature to described clinical relevance and tumor microenvironment of NSCLC, which revealed that circadian rhythms might play an influential role in the NSCLC.
Project description:Alzheimer's disease (AD) is a neurodegenerative disorder with a growing epidemiological importance characterized by significant disease burden. Sleep-related pathological symptomatology often accompanies AD. The etiology and pathogenesis of disrupted circadian rhythm and AD share common factors, which also opens the perspective of viewing them as a mutually dependent process. This article focuses on the bi-directional relationship between these processes, discussing the pathophysiological links and clinical aspects. Common mechanisms linking both processes include neuroinflammation, neurodegeneration, and circadian rhythm desynchronization. Timely recognition of sleep-specific symptoms as components of AD could lead to an earlier and correct diagnosis with an opportunity of offering treatments at an earlier stage. Likewise, proper sleep hygiene and related treatments ought to be one of the priorities in the management of the patient population affected by AD. This narrative review brings a comprehensive approach to clearly demonstrate the underlying complexities linking AD and circadian rhythm disruption. Most clinical data are based on interventions including melatonin, but larger-scale research is still scarce. Following a pathophysiological reasoning backed by evidence gained from AD models, novel anti-inflammatory treatments and those targeting metabolic alterations in AD might prove useful for normalizing a disrupted circadian rhythm. By restoring it, benefits would be conferred for immunological, metabolic, and behavioral function in an affected individual. On the other hand, a balanced circadian rhythm should provide greater resilience to AD pathogenesis.