Unknown

Dataset Information

0

Efficient Grafting of Cyclodextrin to Alginate and Performance of the Hydrogel for Release of Model Drug.


ABSTRACT: Controlling the rate of release of molecules from a hydrogel is of high interest for various drug delivery systems and medical devices. A strategy to alter the release profiles of soluble and poorly soluble active ingredients from hydrogels can be to combine the hydrogel forming ability of alginate with the inclusion forming ability of cyclodextrins (CyD). Here, β-CyD was grafted to alginate in a three-step synthesis using periodate oxidation, reductive amination and copper(I)-catalyzed azide-alkyne cycloaddition. A grafting degree of 4.7% mol β-CyD/mol sugar residues was obtained. The grafting degree was controlled by varying the reaction parameters where the amount of linker used in reductive amination was especially influential. Ca-alginate gel beads grafted with β-CyD showed increased uptake of the model molecule methyl orange. Release experiments showed that the grafted material had a prolonged release of methyl orange and an increased total amount of released methyl orange. These results show that the β-CyD grafted alginate is still able to form a hydrogel while the grafted cyclodextrins retain their ability to form inclusion complex with methyl orange. Further testing should be done with this system to investigate capability for drug delivery applications.

SUBMITTER: Omtvedt LA 

PROVIDER: S-EPMC6597533 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient Grafting of Cyclodextrin to Alginate and Performance of the Hydrogel for Release of Model Drug.

Omtvedt Line Aa LA   Dalheim Marianne Ø MØ   Nielsen Thorbjørn T TT   Larsen Kim L KL   Strand Berit L BL   Aachmann Finn L FL  

Scientific reports 20190627 1


Controlling the rate of release of molecules from a hydrogel is of high interest for various drug delivery systems and medical devices. A strategy to alter the release profiles of soluble and poorly soluble active ingredients from hydrogels can be to combine the hydrogel forming ability of alginate with the inclusion forming ability of cyclodextrins (CyD). Here, β-CyD was grafted to alginate in a three-step synthesis using periodate oxidation, reductive amination and copper(I)-catalyzed azide-al  ...[more]

Similar Datasets

| S-EPMC6912182 | biostudies-literature
| S-EPMC8064464 | biostudies-literature
| S-EPMC8149846 | biostudies-literature
| S-EPMC4513302 | biostudies-other
| S-EPMC9070770 | biostudies-literature
| S-EPMC5979260 | biostudies-literature
| S-EPMC11675168 | biostudies-literature
| S-EPMC4843523 | biostudies-literature
| S-EPMC9897158 | biostudies-literature
| S-EPMC8228237 | biostudies-literature