Ontology highlight
ABSTRACT: Significance statement
Genome occupancy analysis of oligodendrocytes in response to lysolecithin-mediated demyelination injury revealed that Olig2 and its downstream target Gpr17 are part of regulatory circuitry critical for oligodendrocyte survival. Gpr17 inhibits oligodendrocyte survival through activation of Xaf1 and cell differentiation by reducing Epac1 expression. The loss of Gpr17 in mice led to precocious myelination and an earlier onset of remyelination after demyelination. Pharmacological inhibition of Gpr17 promoted remyelination, highlighting the potential for Gpr17-targeted therapeutic approaches in demyelination diseases.
SUBMITTER: Ou Z
PROVIDER: S-EPMC6601930 | biostudies-literature | 2016 Oct
REPOSITORIES: biostudies-literature
The Journal of neuroscience : the official journal of the Society for Neuroscience 20161001 41
Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination; however, the underlying molecular mechanisms remain unclear. Here, we performed genome occupancy analysis by chromatin immunoprecipitation sequencing in oligodendrocytes in response to lysolecithin-induced injury and found that Olig2 and its downstream target Gpr17 are critical factors in regulating oligodendrocyte survival. After injury to oligo ...[more]