Ontology highlight
ABSTRACT: Significance statement
We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.
SUBMITTER: Slabbaert JR
PROVIDER: S-EPMC6602013 | biostudies-literature | 2016 Feb
REPOSITORIES: biostudies-literature
The Journal of neuroscience : the official journal of the Society for Neuroscience 20160201 6
Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the ...[more]