Ontology highlight
ABSTRACT: Significance statement
Muscle denervation is a convenient model to examine expression of genes encoding proteins of the neuromuscular junction, especially acetylcholine receptors (AChRs). Despite the accepted model of AChR regulation, which implicates transcriptional mechanisms, it remains plausible that such events cannot fully account for changes in AChR expression following denervation. We show that denervation increases expression of the RNA-binding protein HuR, which in turn, causes an increase in the stability of AChR β-subunit mRNAs in denervated muscle. Our findings demonstrate for the first time the contribution of post-transcriptional events in controlling AChR expression in skeletal muscle, and points toward a central role for HuR in mediating synaptic development while also paving the way for developing RNA-based therapeutics for neuromuscular diseases.
SUBMITTER: Joassard OR
PROVIDER: S-EPMC6605275 | biostudies-literature | 2015 Aug
REPOSITORIES: biostudies-literature
The Journal of neuroscience : the official journal of the Society for Neuroscience 20150801 31
Acetylcholine receptors (AChRs) are heteromeric membrane proteins essential for neurotransmission at the neuromuscular junction. Previous work showed that muscle denervation increases expression of AChR mRNAs due to transcriptional activation of AChR subunit genes. However, it remains possible that post-transcriptional mechanisms are also involved in controlling the levels of AChR mRNAs following denervation. We examined whether post-transcriptional events indeed regulate AChR β-subunit mRNAs in ...[more]