Project description:Cerebrovascular reactivity (CVR) is reduced in patients with cognitive decline. Women with a history of preeclampsia are at increased risk for cognitive decline. This study examined an association between pregnancy history and CVR using a subgroup of 40 age- and parity-matched pairs of women having histories of preeclampsia (n=27) or normotensive pregnancy (n=29) and the association of activated blood elements with CVR. Middle cerebral artery velocity was measured by Doppler ultrasound before and during hypercapnia to assess CVR. Thirty-eight parameters of blood cellular elements, microvesicles, and cell-cell interactions measured in venous blood were assessed for association with CVR using principal component analysis. Middle cerebral artery velocity was lower in the preeclampsia compared with the normotensive group at baseline (63±4 versus 73±3 cm/s; P=0.047) and during hypercapnia (P=0.013-0.056). CVR was significantly lower in the preeclampsia compared with the normotensive group (2.1±1.3 versus 2.9±1.1 cm·s·mm Hg; P=0.009). Globally, the association of the 7 identified principal components with preeclampsia (P=0.107) and with baseline middle cerebral artery velocity (P=0.067) did not reach statistical significance. The interaction between pregnancy history and principal components with respect to CVR (P=0.084) was driven by a nominally significant interaction between preeclampsia and the individual principal component defined by blood elements, platelet aggregation, and interactions of platelets with monocytes and granulocytes (P=0.008). These results suggest that having a history of preeclampsia negatively affects the cerebral circulation years beyond the pregnancy and that this effect was associated with activated blood elements.
Project description:Cerebrovascular disease is a major cause of morbidity, mortality, and disability in women. The spectrum of disease differs between men and women, with women being particularly vulnerable to certain conditions, especially during specific periods of life such as pregnancy. There are several unique risk factors for cerebrovascular disease in women, and the influence of some traditional risk factors for stroke is stronger in women. Moreover, disparities persist in representation of women in clinical trials, acute intervention, and stroke outcomes. In this review, we aimed to explore the epidemiology, etiologies, and management of cerebrovascular disease in women, highlighting some of these differences and the growing need for sex-specific management guidelines and health policies.
Project description:BackgroundAlthough both a history of cerebrovascular disease (CVD) and glucose abnormality are risk factors for CVD, few large studies have examined their association with subsequent CVD in the same cohort. Thus, we compared the impact of prior CVD, glucose status, and their combinations on subsequent CVD using real-world data.MethodsThis is a retrospective cohort study including 363,627 men aged 18-72 years followed for ≥ 3 years between 2008 and 2016. Participants were classified as normoglycemia, borderline glycemia, or diabetes defined by fasting plasma glucose, HbA1c, and antidiabetic drug prescription. Prior and subsequent CVD (i.e. ischemic stroke, transient ischemic attack, and non-traumatic intracerebral hemorrhage) were identified according to claims using ICD-10 codes, medical procedures, and questionnaires.ResultsParticipants' mean age was 46.1 ± 9.3, and median follow up was 5.2 (4.2, 6.7) years. Cox regression analysis showed that prior CVD + conferred excess risk for CVD regardless of glucose status (normoglycemia: hazard ratio (HR), 8.77; 95% CI 6.96-11.05; borderline glycemia: HR, 7.40, 95% CI 5.97-9.17; diabetes: HR, 5.73, 95% CI 4.52-7.25). Compared with normoglycemia, borderline glycemia did not influence risk of CVD, whereas diabetes affected subsequent CVD in those with CVD- (HR, 1.50, 95% CI 1.34-1.68). In CVD-/diabetes, age, current smoking, systolic blood pressure, high-density lipoprotein cholesterol, and HbA1c were associated with risk of CVD, but only systolic blood pressure was related to CVD risk in CVD + /diabetes.ConclusionsPrior CVD had a greater impact on the risk of CVD than glucose tolerance and glycemic control. In participants with diabetes and prior CVD, systolic blood pressure was a stronger risk factor than HbA1c. Individualized treatment strategies should consider glucose tolerance status and prior CVD.
Project description:Purpose of reviewCerebrovascular disease (CeVD) remains a major cause of death and a leading cause of disability worldwide. CeVD is a complex and multifactorial disease caused by the interaction of vascular risk factors, environment, and genetic factors. In the present article, we discussed genetic susceptibility to CeVD, with particular emphasis on genetic studies of the associations between lipid traits and CeVD.Recent findingsSeveral animal and clinical studies clearly defined genetic predisposition to atherosclerosis and CeVD, and particularly to ischemic stroke. Recent evidence has shown that traditional vascular risk factors explain only a small proportion of variance in atherosclerosis, suggesting that additional nontraditional factors and novel genetic determinants impact CeVD. With the help of genome-wide technology, novel genetic variants have been implicated in CeVD and lipid metabolism such as those in protein convertase subtilisin/kexin type 9 (PCSK9) gene in stroke and familial hypercholesterolemia. These studies are important as they contribute to our understanding of the genetic mechanisms underlying CeVD and to developing more effective CeVD prevention strategies.SummaryCeVD is a complex and multifactorial disease and genetics likely plays an important role in its pathogenesis. The gene-gene and gene-environment interactions of genes involved in biology of vascular disease, including the lipid metabolism are important factors for individual susceptibility to CeVD. Accounting for individual variation in genes, environment and lifestyle will bring us closer to precision medicine, which is an emerging and recently introduced new approach for disease treatment and prevention in clinical practice.
Project description:Imaging inflammation in large intracranial artery pathology may play an important role in the diagnosis of and risk stratification for a variety of cerebrovascular diseases. Looking beyond the lumen has already generated widespread excitement in the stroke community, and the potential to unveil molecular processes in the vessel wall is a natural evolution to develop a more comprehensive understanding of the pathogenesis of diseases, such as ICAD and brain aneurysms.
Project description:BackgroundAccumulating evidence suggests that cardiac findings after stroke are an important, yet understudied, manifestation of brain-heart interactions. Our aim was to investigate and compare cardiac findings after different cerebrovascular events (acute ischemic stroke, transient ischemic attack, and hemorrhagic stroke).Methods and resultsThere were 7113 patients screened who were treated between December 2013 and December 2020 at the University Hospital Zurich for ischemic stroke, transient ischemic attack, and hemorrhagic stroke. Seven hundred twenty-one patients without evidence of previous cardiac disease or presumed cardioembolic origin of their cerebrovascular disease and with at least 1 cardiac checkup were included. Clinical reports from the year following disease onset were screened for new cardiac findings, which were categorized as arrhythmia/electrocardiographic changes, myocardial alterations, valvular abnormalities, and coronary perfusion insufficiency. Differences in proportions of findings among groups were analyzed using the Pearson χ2 test or Fisher exact test. ECG changes were observed in 81.7% (n=474) of patients with ischemic stroke, 71.4% (n=70) of patients with transient ischemic attack, and 55.8% (n=24) of patients with hemorrhagic stroke (P<0.001). Myocardial alterations occurred often in all 3 groups (60.9% ischemic stroke [n=353], 59.2% transient ischemic attack [n=58], 44.2% hemorrhagic stroke [n=19]; P=0.396).ConclusionsCardiac findings are frequent in patients with cerebrovascular disease, even without prior cardiac problems or suspected cardiac cause. Similarities, especially between patients with ischemic stroke and transient ischemic attack, were observed. Our data suggest that all patients with acute cerebrovascular events should receive thorough workup searching for cardiac manifestations.
Project description:Perturbations in cerebral blood flow and abnormalities in blood vessel structure are the hallmarks of cerebrovascular disease. While there are many genetic and environmental factors that affect these entities through a heterogeneous group of disease processes, the ultimate final pathologic insult in humans is defined as a stroke, or damage to brain parenchyma. In the case of ischemic stroke, blood fails to reach its target destination whereas in hemorrhagic stroke, extravasation of blood occurs outside of the blood vessel lumen, resulting in direct damage to brain parenchyma. As these acute events can be neurologically devastating, if not fatal, development of novel therapeutics are urgently needed. The zebrafish (Danio rerio) is an attractive model for the study of cerebrovascular disease because of its morphological and physiological similarity to human cerebral vasculature, its ability to be genetically manipulated, and its fecundity allowing for large-scale, phenotype-based screens.
Project description:There is increasing evidence that impairments of cerebrovascular function and/or abnormalities of the cerebral vasculature might contribute to early neuronal cell loss in Huntington's disease (HD). Studies in both healthy individuals as well as in patients with other neurodegenerative disorders have used an exogenous carbon dioxide (CO2) challenge in conjunction with functional magnetic resonance imaging (fMRI) to assess regional cerebrovascular reactivity (CVR). In this study, we explored potential impairments of CVR in HD. Twelve gene expanded HD individuals, including both pre-symptomatic and early symptomatic HD and eleven healthy controls were administered a gas mixture targeting a 4-8 mmHg increase in CO2 relative to the end-tidal partial pressure of CO2 (P ET CO2) at rest. A Hilbert Transform analysis was used to compute the cross-correlation between the time series of regional BOLD signal changes (ΔBOLD) and increased P ET CO2, and to estimate the response delay of ΔBOLD relative to P ET CO2. After correcting for age, we found that the cross-correlation between the time series for regional ΔBOLD and for P ET CO2 was weaker in HD subjects than in controls in several subcortical white matter regions, including the corpus callosum, subcortical white matter adjacent to rostral and caudal anterior cingulate, rostral and caudal middle frontal, insular, middle temporal, and posterior cingulate areas. In addition, greater volume of dilated perivascular space (PVS) was observed to overlap, primarily along the periphery, with the areas that showed greater ΔBOLD response delay. Our preliminary findings support that alterations in cerebrovascular function occur in HD and may be an important, not as yet considered, contributor to early neuropathology in HD.