Unknown

Dataset Information

0

Entropic colloidal crystallization pathways via fluid-fluid transitions and multidimensional prenucleation motifs.


ABSTRACT: Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid-fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.

SUBMITTER: Lee S 

PROVIDER: S-EPMC6660786 | biostudies-literature | 2019 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Entropic colloidal crystallization pathways via fluid-fluid transitions and multidimensional prenucleation motifs.

Lee Sangmin S   Teich Erin G EG   Engel Michael M   Glotzer Sharon C SC  

Proceedings of the National Academy of Sciences of the United States of America 20190708 30


Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models  ...[more]

Similar Datasets

| S-EPMC7668103 | biostudies-literature
| S-EPMC6708323 | biostudies-literature
| S-EPMC6325105 | biostudies-literature
| S-EPMC7020105 | biostudies-literature
| S-EPMC5594686 | biostudies-other
| S-EPMC4418869 | biostudies-other
| S-EPMC7896337 | biostudies-literature
| S-EPMC5658384 | biostudies-other
| S-EPMC3592408 | biostudies-literature
| S-EPMC5430959 | biostudies-literature