Project description:PurposeSkin pigmentation influences peripheral oxygen saturation (SpO2) compared to arterial saturation of oxygen (SaO2). Occult hypoxemia (SaO2 ≤ 88% with SpO2 ≥ 92%) is associated with increased in-hospital mortality in venovenous-extracorporeal membrane oxygenation (VV-ECMO) patients. We hypothesized VV-ECMO cannulation, in addition to race/ethnicity, accentuates the SpO2-SaO2 discrepancy due to significant hemolysis.MethodsAdults (≥ 18 years) supported with VV-ECMO with concurrently measured SpO2 and SaO2 measurements from over 500 centers in the Extracorporeal Life Support Organization Registry (1/2018-5/2023) were included. Multivariable logistic regressions were performed to examine whether race/ethnicity was associated with occult hypoxemia in pre-ECMO and on-ECMO SpO2-SaO2 calculations.ResultsOf 13,171 VV-ECMO patients, there were 7772 (59%) White, 2114 (16%) Hispanic, 1777 (14%) Black, and 1508 (11%) Asian patients. The frequency of on-ECMO occult hypoxemia was 2.0% (N = 233). Occult hypoxemia was more common in Black and Hispanic patients versus White patients (3.1% versus 1.7%, P < 0.001 and 2.5% versus 1.7%, P = 0.025, respectively). In multivariable logistic regression, Black patients were at higher risk of pre-ECMO occult hypoxemia versus White patients (adjusted odds ratio [aOR] = 1.55, 95% confidence interval [CI] = 1.18-2.02, P = 0.001). For on-ECMO occult hypoxemia, Black patients (aOR = 1.79, 95% CI = 1.16-2.75, P = 0.008) and Hispanic patients (aOR = 1.71, 95% CI = 1.15-2.55, P = 0.008) had higher risk versus White patients. Higher pump flow rates (aOR = 1.29, 95% CI = 1.08-1.55, P = 0.005) and on-ECMO 24-h lactate (aOR = 1.06, 95% CI = 1.03-1.10, P < 0.001) significantly increased the risk of on-ECMO occult hypoxemia.ConclusionSaO2 should be carefully monitored if using SpO2 during ECMO support for Black and Hispanic patients especially for those with high pump flow and lactate values at risk for occult hypoxemia.
Project description:BackgroundVenovenous extracorporeal membrane oxygenation (VV ECMO) has been widely used for severe acute respiratory distress syndrome (ARDS) in recent years. However, the role of hemoadsorption in ARDS patients requiring VV ECMO is unclear.MethodsTherefore, we conducted a systematic review to describe the effect of hemoadsorption on outcomes of ARDS patients requiring VV ECMO and elucidate the risk factors for adverse outcomes. We conducted and reported a systematic literature review based on the principles derived from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The systematic review searched Embase, CINHAL, and Pubmed databases for studies on ARDS patients receiving hemoadsorption and VV ECMO. The demographic data, clinical data and biological data of the patients were collected.ResultsWe ultimately included a total of 8 articles including 189 patients. We characterized the population both clinically and biologically. Our review showed most studies described reductions in inflammatory markers and fluid resuscitation drug dosage in ARDS patients with Coronavirus disease 2019 (COVID-19) or sepsis after hemoadsorption.ConclusionBecause most of the studies have the characteristics of high heterogeneity, we could only draw very cautious conclusions that hemoadsorption therapy may enhance hemodynamic stability in ARDS patients with COVID-19 or sepsis receiving VV ECMO support. However, our results do not allow us to draw conclusions that hemoadsorption could reduce inflammation and mortality. Prospective randomized controlled studies with a larger sample size are needed in the future to verify the role of hemoadsorption in ARDS patients requiring VV ECMO.
Project description:Venovenous extracorporeal membrane oxygenation is a treatment for acute respiratory distress syndrome. Femoro-atrial cannulation means blood is drained from the inferior vena cava and returned to the superior vena cava; the opposite is termed atrio-femoral. Clinical data comparing these two methods is scarce and conflicting. Using computational fluid dynamics, we aim to compare atrio-femoral and femoro-atrial cannulation to assess the impact on recirculation fraction, under ideal conditions and several clinical scenarios. Using a patient-averaged model of the venae cavae and right atrium, commercially-available cannulae were positioned in each configuration. Additionally, occlusion of the femoro-atrial drainage cannula side-holes with/without reduced inferior vena cava inflow (0-75%) and retraction of the atrio-femoral drainage cannula were modelled. Large-eddy simulations were run for 2-6L/min circuit flow, obtaining time-averaged flow data. The model showed good agreement with clinical atrio-femoral recirculation data. Under ideal conditions, atrio-femoral yielded 13.5% higher recirculation than femoro-atrial across all circuit flow rates. Atrio-femoral right atrium flow patterns resembled normal physiology with a single large vortex. Femoro-atrial cannulation resulted in multiple vortices and increased turbulent kinetic energy at > 3L/min circuit flow. Occluding femoro-atrial drainage cannula side-holes and reducing inferior vena cava inflow increased mean recirculation by 11% and 32%, respectively. Retracting the atrio-femoral drainage cannula did not affect recirculation. These results suggest that, depending on drainage issues, either atrio-femoral or femoro-atrial cannulation may be preferrable. Rather than cannula tip proximity, the supply of available venous blood at the drainage site appears to be the strongest factor affecting recirculation.
Project description:BACKGROUND:Nosocomial infections occurring during extracorporeal membrane oxygenation (ECMO) support have already been reported, but few studied infections directly related to ECMO devices. This study aims to evaluate the rate of both colonisations and infections related to ECMO devices at the time of ECMO removal. RESULTS:We included all consecutive adult patients treated with venovenous ECMO (VV-ECMO) for at least 48 h during a 34-month study. At the time of ECMO removal, blood cultures, swab cultures on insertion cannula site and intravascular cannula extremity cultures were systematically performed. Each ECMO device was classified according to the infectious status into three groups: (1) uninfected/uncolonised ECMO device, (2) ECMO device colonisation and (3) ECMO device infection. Ninety-nine patients underwent 103 VV-ECMO, representing 1472 ECMO days. The ECMO device infection rate was 9.7% (10 events), including 7 ECMO device-related bloodstream infections (6.8%). The ECMO device colonisation rate was 32% (33 events). No difference was observed between the three groups, regarding days of mechanical ventilation, ICU length of stay, ICU mortality and in-hospital mortality. We observed a longer ECMO duration in the ECMO device colonisation group as compared to the uninfected/uncolonised ECMO device group [12 (9-20 days) vs. 5 days (5-16 days), respectively, p < 0.05]. CONCLUSIONS:At the time of ECMO removal, systematic blood culture and intravascular extremity cannula culture may help to diagnose ECMO device-related infection. We reported a quite low infection rate related to ECMO device. Further studies are needed to evaluate the benefits of systematic strategies of cannula culture at the time of ECMO removal.
Project description:BackgroundVenovenous extracorporeal membrane oxygenation (ECMO) is increasingly being used for acute respiratory distress syndrome and as a bridge to lung transplantation. After initiation of venovenous ECMO, systemic anticoagulation therapy is traditionally administered and can cause bleeding diathesis. Here, we investigated whether venovenous ECMO can be administered without continuous systemic anticoagulation administration for patients with acute respiratory distress syndrome.MethodsThis is a retrospective review of an institutional ECMO database. We included consecutive patients from January 2015 through February 2019. Overall, 38 patients received low levels of continuous systemic anticoagulation (AC+) whereas the subsequent 36 patients received standard venous thromboprophylaxis (AC-). Published Extracorporeal Life Support Organization guidelines were used for the definition of outcomes and complications.ResultsOverall, survival was not different between the two groups (P = .58). However, patients in the AC+ group had higher rates of gastrointestinal bleeding (28.9%, vs AC- group 5.6%; P < .001). The events per patient-day of gastrointestinal bleeding was 0.00025 in the AC- group and 0.00064 in the AC+ group (P < .001). In addition, oxygenator dysfunction was increased in the AC+ group (28.9% and 0.00067 events per patient-day, vs AC- 11.1% and 0.00062 events per patient-day; P = .02). Furthermore, the AC+ group received more transfusions: packed red blood cells, AC+ group 94.7% vs AC- group 55.5% (P < .001); fresh frozen plasma, AC+ 60.5% vs AC- 16.6% (P = .001); and platelets, AC+ 84.2% vs AC- 27.7% (P < .001). There was no circuit thrombosis in either groups throughout the duration of ECMO support.ConclusionsOur results suggest that venovenous ECMO can be safely administered without continuous systemic anticoagulation therapy. This approach may be associated with reduced bleeding diathesis and need for blood transfusions.
Project description:BackgroundThe effect of prone positioning (PP) on respiratory mechanics remains uncertain in patients with severe acute respiratory distress syndrome (ARDS) requiring venovenous extracorporeal membrane oxygenation (VV-ECMO).MethodsWe prospectively analyzed the effects of PP on respiratory mechanics from continuous data with over a thousand time points during 16-h PP sessions in patients with COVID-19 and ARDS under VV-ECMO conditions. The evolution of respiratory mechanical and oxygenation parameters during the PP sessions was evaluated by dividing each PP session into four time quartiles: first quartile: 0-4 h, second quartile: 4-8 h, third quartile: 8-12 h, and fourth quartile: 12-16 h.ResultsOverall, 38 PP sessions were performed in 10 patients, with 3 [2-5] PP sessions per patient. Seven (70%) patients were responders to at least one PP session. PP significantly increased the PaO2/FiO2 ratio by 14 ± 21% and compliance by 8 ± 15%, and significantly decreased the oxygenation index by 13 ± 18% and driving pressure by 8 ± 12%. The effects of PP on respiratory mechanics but not on oxygenation persisted after supine repositioning. PP-induced changes in different respiratory mechanical parameters and oxygenation started as early as the first-time quartile, without any difference in PP-induced changes among the different time quartiles. PP-induced changes in driving pressure (-14 ± 14 vs. -6 ± 10%, p = 0.04) and mechanical power (-11 ± 13 vs. -0.1 ± 12%, p = 0.02) were significantly higher in responders (increase in PaO2/FiO2 ratio > 20%) than in non-responder patients.ConclusionsIn patients with COVID-19 and severe ARDS, PP under VV-ECMO conditions improved the respiratory mechanical and oxygenation parameters, and the effects of PP on respiratory mechanics persisted after supine repositioning.
Project description:IntroductionThere is a critical gap in understanding which SARS-CoV-2 patients would benefit most from venovenous extracorporeal membrane oxygenation (VV-ECMO) support. The potential role of a dysregulated immune response is still unclear in this patient population.ObjectivesTo assess the potential predictive value of SARS-CoV-2 specific cellular and humoral immune responses for survival in critically ill COVID-19 patients requiring VV-ECMO.MethodsWe conducted a prospective single-center observational study of unvaccinated patients requiring VV-ECMO support treated at the intensive care unit of Semmelweis University Heart and Vascular Center between March and December 2021. Peripheral blood samples were collected to measure the humoral and cellular immune statuses of the patients at the VV-ECMO cannulation. Patients were followed until hospital discharge.ResultsOverall, 35 COVID-19 patients (63% men, median age 37 years) on VV-ECMO support were included in our study. The time from COVID-19 verification to ECMO support was a median (IQR) of 10 (7-14) days. Of the patients, 9 (26%) were discharged alive and 26 (74%) died during their hospital stay. Immune tests confirmed ongoing SARS-CoV-2 infection in all the patients, showing an increased humoral immune response. SARS-CoV-2-specific cellular immune response was significantly higher among survivors compared to the deceased patients. A higher probability of survival was observed in patients with markers indicating a higher T cell response detected by both QuantiFeron (QF) and flow cytometry (Flow) assays. (Flow S1 CD8+ ≥ 0.15%, Flow S1 CD4+ ≥ 0.02%, QF CD4 ≥ 0.07, QF whole genome ≥ 0.59). In univariate Cox proportional hazard regression analysis BMI, right ventricular (RV) failure, QF whole genome T cell level, and Flow S1 CD8+ T cell level were associated with mortality, and we found that an increased T cell response showed a significant negative association with mortality, independent of BMI and RV failure.ConclusionEvaluation of SARS-CoV-2 specific T cell response before the cannulation can aid the risk stratification and evaluation of seriously ill COVID-19 patients undergoing VV-ECMO support by predicting survival, potentially changing our clinical practice in the future.