Project description:Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis is not known. In this study, we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20 and Nkx2-5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that the relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac gene promoters in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs.
Project description:SETD7 is a methyltransferase that specifically catalyzes the monomethylation of lysine 4 on histone H3. A variety of studies has revealed the role of SETD7 in posttranslational modifications of non-histone proteins. However, the prognostic value of SETD7 on breast cancer and the ability of SETD7 of regulating intrinsic redox homeostasis has never been investigated. In this study, using The Cancer Genome Atlas (TCGA) database, we revealed that SETD7 was a potential prognostic marker of breast cancer. Median survival time of patients with low SETD7 expression (18.1 years) was twice than that of SETD7 low-expressed patients (9.5 years). We demonstrated that SETD7 promoted tumor cell proliferation and prevented cell apoptosis and that SETD7 delicately maintained the redox homeostasis through regulating the levels of GSH/GSSG and ROS. Further studies indicated that SETD7 was a positive activator of KEAP1-NRF2 pathway. Using dual luciferase assay, we revealed the role of SETD7 as a transcriptional activator of antioxidant enzymes. Downregulation of SETD7 in MCF7 and MDA-MB-231 cells impaired the expression of antioxidant enzymes and induces imbalance of redox status. Together, we proposed SETD7 as a prognostic marker of breast cancer and a novel antioxidant promoter under oxidative stress in breast cancer.
Project description:While skeletal myogenesis is tightly coordinated by myogenic regulatory factors including MyoD and myogenin, chromatin modifications have emerged as vital mechanisms of myogenic regulation. We have previously established that bexarotene, a clinically approved agonist of retinoid X receptor (RXR), promotes the specification and differentiation of skeletal muscle lineage. Here, we examine the genome-wide impact of rexinoids on myogenic differentiation through integral RNA-seq and ChIP-seq analyses. We found that bexarotene promotes myoblast differentiation through the coordination of exit from the cell cycle and the activation of muscle-related genes. We uncovered a new mechanism of rexinoid action which is mediated by the nuclear receptor and largely reconciled through a direct regulation of MyoD gene expression. In addition, we determined a rexinoid-responsive residue-specific histone acetylation at a distinct chromatin state associated to MyoD and myogenin. Thus, we provide novel molecular insights into the interplay between RXR signaling and chromatin states pertinent to myogenic programs in early myoblast differentiation.
Project description:Single strand nicks and gaps in DNA have been reported to increase the efficiency of nucleosome loading mediated by chromatin assembly factor 1 (CAF-1). However, on mismatch-containing substrates, these strand discontinuities are utilized by the mismatch repair (MMR) system as loading sites for exonuclease 1, at which degradation of the error-containing strand commences. Because packaging of DNA into chromatin might inhibit MMR, we were interested to learn whether chromatin assembly is differentially regulated on heteroduplex and homoduplex substrates. We now show that the presence of a mismatch in a nicked plasmid substrate delays nucleosome loading in human cell extracts. Our data also suggest that, once the mismatch is removed, repair of the single-stranded gap is accompanied by efficient nucleosome loading. We postulated that the balance between MMR and chromatin assembly might be governed by proliferating cell nuclear antigen (PCNA), the processivity factor of replicative DNA polymerases, which is loaded at DNA termini and which interacts with the MSH6 subunit of the mismatch recognition factor MutS?, as well as with CAF-1. We now show that this regulation might be more complex; MutS? and CAF-1 interact not only with PCNA, but also with each other. In vivo this interaction increases during S-phase and may be controlled by the phosphorylation status of the p150 subunit of CAF-1.
Project description:Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Project description:In December 2019, a novel COVID-19 infection caused by SARS-CoV-2 has emerged as a global emergency. In a few months, the pathogen has infected millions of people in the world. Primarily SARS-CoV-2 infects the pulmonary system which ultimately leads to ARDS and lung failure. The majority of patients develop milder symptoms but the infection turns severe in a huge number of people, which ultimately results in enhanced mortality in COVID-19 patients. Co-morbid conditions, primarily cardiovascular complications and diabetes, have been reported to show a strong correlation with COVID-19 severity. Further, the onset of myocardial injury secondary to pulmonary damage has been observed in critically ill patients who have never reported heart-related ailments before. Due to drastic health risks associated with virus infection, the unprecedented disruption in normal business throughout the world has caused economic misery. Apparently, newer treatments are urgently needed to combat the virus particularly to reduce the severity burden. Therefore, understanding the crosstalk between lung and heart during COVID-19 might give us better clarity for early diagnosis followed by appropriate treatment in patients with the likelihood of developing severe symptoms. Accordingly, the present review highlights the potential mechanisms that may explain the crosstalk between lung and heart so that effective treatment/management strategies can be evolved swiftly in this direction.
Project description:Nuclear compartments form via biomolecular phase separation, mediated through multivalent properties of biomolecules concentrated within condensates. Certain compartments are associated with specific chromatin regions, including transcriptional initiation condensates, which are composed of transcription factors and transcriptional machinery, and form at acetylated regions including enhancer and promoter loci. While protein self-interactions, especially within low-complexity and intrinsically disordered regions, are known to mediate condensation, the role of substrate-binding interactions in regulating the formation and function of biomolecular condensates is underexplored. Here, utilizing live-cell experiments in parallel with coarse-grained simulations, we investigate how chromatin interaction of the transcriptional activator BRD4 modulates its condensate formation. We find that both kinetic and thermodynamic properties of BRD4 condensation are affected by chromatin binding: nucleation rate is sensitive to BRD4-chromatin interactions, providing an explanation for the selective formation of BRD4 condensates at acetylated chromatin regions, and thermodynamically, multivalent acetylated chromatin sites provide a platform for BRD4 clustering below the concentration required for off-chromatin condensation. This provides a molecular and physical explanation of the relationship between nuclear condensates and epigenetically modified chromatin that results in their mutual spatiotemporal regulation, suggesting that epigenetic modulation is an important mechanism by which the cell targets transcriptional condensates to specific chromatin loci.
Project description:Chromatin dynamics play an essential role in regulating the accessibility of genomic DNA for a variety of nuclear processes, including gene transcription and DNA repair. The posttranslational modification of the core histones and the action of ATP-dependent chromatin remodeling enzymes represent two primary mechanisms by which chromatin dynamics are controlled and linked to nuclear events. Although there are examples in which a histone modification or a remodeling enzyme may be sufficient to drive a chromatin transition, these mechanisms typically work in concert to integrate regulatory inputs, leading to a coordinated alteration in chromatin structure and function. Indeed, site-specific histone modifications can facilitate the recruitment of chromatin remodeling enzymes to particular genomic regions, or they can regulate the efficiency or the outcome of a chromatin remodeling reaction. Conversely, chromatin remodeling enzymes can also influence, and sometimes directly modulate, the modification state of histones. These functional interactions are generally complex, frequently transient, and often require the association of myriad additional factors. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Project description:The Nuclear Factor of Activated T-cells 1 (NFATc1) transcription factor and the methyltransferase Enhancer of Zeste Homolog 2 (EZH2) significantly contribute to the aggressive phenotype of pancreatic ductal adenocarcinoma (PDAC). Herein, we aimed at dissecting the mechanistic background of their interplay in PDAC progression. NFATc1 and EZH2 mRNA and protein expression and complex formation were determined in transgenic PDAC models and human PDAC specimens. NFATc1 binding on the Ezh2 gene and the consequences of perturbed NFATc1 expression on Ezh2 transcription were explored by Chromatin Immunoprecipitation (ChIP) and upon transgenic or siRNA-mediated interference with NFATc1 expression, respectively. Integrative analyses of RNA- and ChIP-seq data was performed to explore NFATc1-/EZH2-dependent gene signatures. NFATc1 targets the Ezh2 gene for transcriptional activation and biochemically interacts with the methyltransferase in murine and human PDAC. Surprisingly, our genome-wide binding and expression analyses do not link the protein complex to joint gene regulation. In contrast, our findings provide evidence for chromatin-independent functions of the NFATc1:EZH2 complex and reveal posttranslational EZH2 phosphorylation at serine 21 as a prerequisite for robust complex formation. Our findings disclose a previously unknown NFATc1-EZH2 axis operational in the pancreas and provide mechanistic insights into the conditions fostering NFATc1:EZH2 complex formation in PDAC.
Project description:The nematode Caenorhabditis elegans contains several types of endogenous small interfering RNAs (endo-siRNAs) produced by RNA-dependent RNA polymerase (RdRP) complexes. Both 'silencing' siRNAs bound by Worm-specific Argonautes (WAGO) and 'activating' siRNAs bound by the CSR-1 Argonaute require the DRH-3 helicase, an RdRP component. Here, we show that, in the drh-3(ne4253) mutant deficient in RdRP-produced secondary endo-siRNAs, the silencing histone mark H3K9me3 is largely depleted, whereas in the csr-1 partially rescued null mutant strain (WM193), this mark is ectopically deposited on CSR-1 target genes. Moreover, we observe ectopic H3K9me3 at enhancer elements and an increased number of small RNAs that match enhancers in both drh-3 and csr-1 mutants. Finally, we detect accumulation of H3K27me3 at highly expressed genes in the drh-3(ne4253) mutant, which correlates with their reduced transcription. Our study shows that when abundant RdRP-produced siRNAs are depleted, there is ectopic elevation of noncoding RNAs linked to sites with increased silencing chromatin marks. Moreover, our results suggest that enhancer small RNAs may guide local H3K9 methylation.