Unknown

Dataset Information

0

Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging.


ABSTRACT: Fluorescent mitochondria-accumulating delocalized lipophilic cations (DLCs) for cancer therapy have drawn significant attention in the field of cancer theranostics. One of the most promising fluorescent DLCs, F16, can selectively trigger the apoptosis and necrosis of cancer cells, making it an attractive targeted theranostic drug candidate. However, it suffers from low clinical translation potential, largely due to its inefficient anti-cancer activity (IC50 in the μM range) and poorly understood structure-activity relationship (SAR). In this report, eleven indole-ring substituted F16 derivatives (F16s) were synthesized. Among these derivatives, 5BMF was identified as a highly effective theranostic agent, with in vitro studies showing a low IC50 of ∼50 nM (to H2228 cells) and high cancer to normal cell selectivity index of 225. In vivo studies revealed that tumors treated with 5BMF were significantly suppressed (almost no growth over the treatment period) compared to the PBS treated control group, and also no obvious toxicity to mice was found. In addition, the tumor imaging capability of 5BMF was demonstrated by in vivo fluorescence imaging. Finally, we report for the first time a proposed SAR for F16 DLCs. Our work lays down a solid foundation for translating 5BMF into a novel and highly promising DLC for cancer theranostics.

SUBMITTER: Chen H 

PROVIDER: S-EPMC6836573 | biostudies-literature | 2019 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Mitochondria-targeting fluorescent molecules for high efficiency cancer growth inhibition and imaging.

Chen Hao H   Wang Jing J   Feng Xin X   Zhu Mark M   Hoffmann Simon S   Hsu Alex A   Qian Kun K   Huang Daijuan D   Zhao Feng F   Liu Wei W   Zhang Huimao H   Cheng Zhen Z  

Chemical science 20190708 34


Fluorescent mitochondria-accumulating delocalized lipophilic cations (DLCs) for cancer therapy have drawn significant attention in the field of cancer theranostics. One of the most promising fluorescent DLCs, F16, can selectively trigger the apoptosis and necrosis of cancer cells, making it an attractive targeted theranostic drug candidate. However, it suffers from low clinical translation potential, largely due to its inefficient anti-cancer activity (IC<sub>50</sub> in the μM range) and poorly  ...[more]

Similar Datasets

| S-EPMC8905922 | biostudies-literature
| S-EPMC10966975 | biostudies-literature
| S-EPMC9198388 | biostudies-literature
| S-EPMC10093113 | biostudies-literature
| S-EPMC4815426 | biostudies-literature
| S-EPMC6032285 | biostudies-literature
| S-EPMC3221659 | biostudies-literature
| S-EPMC4780104 | biostudies-literature
| S-EPMC7482087 | biostudies-literature
| S-EPMC5441503 | biostudies-literature