Project description:To conduct a multinational survey of intensive care unit professionals to determine the practices on delirium assessment and management, in addition to their perceptions and attitudes toward the evaluation and impact of delirium in patients requiring noninvasive ventilation.An electronic questionnaire was created to evaluate the profiles of the respondents and their related intensive care units, the systematic delirium assessment and management and the respondents' perceptions and attitudes regarding delirium in patients requiring noninvasive ventilation. The questionnaire was distributed to the cooperative network for research of the Associação de Medicina Intensiva Brasileira (AMIB-Net) mailing list and to researchers in different centers in Latin America and Europe.Four hundred thirty-six questionnaires were available for analysis; the majority of the questionnaires were from Brazil (61.9%), followed by Turkey (8.7%) and Italy (4.8%). Approximately 61% of the respondents reported no delirium assessment in the intensive care unit, and 31% evaluated delirium in patients under noninvasive ventilation. The Confusion Assessment Method for the intensive care unit was the most reported validated diagnostic tool (66.9%). Concerning the indication of noninvasive ventilation in patients already presenting with delirium, 16.3% of respondents never allow the use of noninvasive ventilation in this clinical context.This survey provides data that strongly reemphasizes poor efforts toward delirium assessment and management in the intensive care unit setting, especially regarding patients requiring noninvasive ventilation.
Project description:BackgroundNoninvasive ventilation (NIV) has been reported to be beneficial for patients with acute respiratory failure in intensive care unit (ICU); however, factors that influence the clinical outcome of NIV were unclarified. We aim to determine the factors that predict the failure of NIV in critically ill patients with acute respiratory failure (ARF). Setting. Adult mixed ICU in a medical university affiliated hospital. Patients and Methods. A retrospective clinical study using data from critical adult patients with initial NIV admitted to ICU in the period August 2016 to November 2017. Failure of NIV was regarded as patients needing invasive ventilation. Logistic regression was employed to determine the risk factor(s) for NIV, and a predictive model for NIV outcome was set up using risk factors.ResultsOf 101 included patients, 50 were unsuccessful. Although more than 20 variables were associated with NIV failure, multivariate logistic regression demonstrated that only ideal body weight (IBW) (OR 1.110 (95%1.027-1.201), P=0.009), the maximal heart rate during NIV period (HR-MAX) (OR 1.024 (1.004-1.046), P=0.021), the minimal respiratory rate during NIV period (RR-MIN) (OR 1.198(1.051-1.365), P=0.007), and the highest body temperature during NIV period (T-MAX) (OR 1.838(1.038-3.252), P=0.037) were independent risk factors for NIV failure. We set up a predictive model based on these independent risk factors, whose area under the receiver operating characteristic curve (AUROC) was 0.783 (95% CI: 0.676-0.899, P < 0.001), and the sensitivity and specificity of model were 68.75% and 71.43%, respectively, with the optimal cut-off value of 0.4863.ConclusionIBW, HR-MAX, RR-MIN, and T-MAX were associated with NIV failure in patients with ARF. A predictive model based on the risk factors could help to discriminate patients who are vulnerable to NIV failure.
Project description:BackgroundCritically ill pediatric patients frequently require hemoglobin monitoring. Accurate noninvasive Hb (SpHb) would allow practitioners to decrease anemia from repeated blood draws, traumatic blood draws, and a decreased number of laboratory Hb (LabHb) medical tests. The Food and Drug Administration has approved the Masimo Pronto SpHb and associated Rainbow probes; however, its use in the pediatric intensive care unit (PICU) is controversial. In this study, we define the degree of agreement between LabHb and SpHb using the Masimo Pronto SpHb Monitor and identify clinical and demographic conditions associated with decreased accuracy.Materials and methodsWe performed a prospective, observational study in a large PICU at an academic medical center. Fifty-three pediatric patients (30-d and 18-y-old), weighing >3 kg, admitted to the PICU from January-April 2013 were examined. SpHb levels measured at the time of LabHb blood draw were compared and analyzed.ResultsOnly 83 SpHb readings were obtained in 118 attempts (70.3%) and 35 readings provided a result of "unable to obtain." The mean LabHb and SpHb were 11.1 g/dL and 11.2 g/dL, respectively. Bland-Altman analysis showed a mean difference of 0.07 g/dL with a standard deviation of ±2.59 g/dL. Pearson correlation is 0.55, with a 95% confidence interval between 0.38 and 0.68. Logistic regression showed that extreme LabHb values, increasing skin pigmentation, and increasing body mass index were predictors of poor agreement between SpHb and LabHb (P < 0.05). Separately, increasing body mass index, hypoxia, and hypothermia were predictors for undetectable readings (P < 0.05).ConclusionsThe Masimo Pronto SpHb Monitor provides adequate agreement for the trending of hemoglobin levels in critically ill pediatric patients. However, the degree of agreement is insufficient to be used as the sole indicator for transfusion decisions and should be used in context of other clinical parameters to determine the need for LabHb in critically ill pediatric patients.
Project description:Reintubation after weaning from mechanical ventilation is relatively common and is associated with poor outcomes. Different methods to decrease the reintubation rate post extubation, including noninvasive ventilation, and more recently high-flow oxygen (HFO) therapy, have been proposed. In this study, we aimed to assess the safety of introducing HFO in the post-extubation care of intensive care unit (ICU) patients. We conducted a single-center cohort study of extubated adult patients hospitalized in a surgical ICU and previously mechanically ventilated for > 1 day. Our study consisted of two phases: Phase 1 (before the introduction of HFO from April 2015 to April 2016) and Phase P2 (after the introduction of HFO from April 2017 to April 2018). The primary endpoint was the reintubation rate within 48 hours of extubation. In total, 290 patients (median age 65 years [50-74]; 190 men [65.5%]) were included in the analysis (181 and 109 in Phases 1 and 2, respectively). The results of the post-extubation use of noninvasive methods (noninvasive ventilation and/or HFO) were not significantly different between the two phases (41 [22.7%] versus 29 [26.6%] patients; p = 0.480), however these methods were implemented earlier in Phase 2 (0 versus 4 hours; p = 0.009) and HFO was used significantly more often than noninvasive ventilation (24 [22.0%] versus 25 [13.8%] patients; p = 0.039). The need for reintubation within 48 hours post extubation was significantly lower in Phase 2 (4 [3.7%] versus 20 [11.0%] patients; p = 0.028) but was not significantly different at 7 days post extubation (10 [9.2%] versus 30 [16.6%] patients; p = 0.082). The earlier implementation of noninvasive methods and the increased use of HFO beginning in Phase 2 were safe and effective based on the reintubation rates within the first 48 hours post extubation and after 7 days.
Project description:BackgroundBefore the main trial in which respiratory polygraphy will be used to evaluate postextubation sleep apnea in critically ill patients, we performed a prospective pilot study to ensure that any issues with the conduct of the trial would be identified.MethodsIn the present study, 13 adult patients who had received mechanical ventilation for ≥24 hours were prospectively recruited. Among the patients, 10 successfully completed respiratory polygraphy on the first or second night after extubation. Data regarding the types and doses of corticosteroids, analgesics, sedatives, and muscle relaxants as well as the methods of oxygen delivery were recorded.ResultsDuring the night of respiratory polygraphy, all 10 patients received supplemental oxygen (low-flow oxygen, n=5; high-flow oxygen, n=5), and seven patients received intravenous corticosteroids. Three of the 10 patients had a respiratory event index (REI) ≥5/hr. All respiratory events were obstructive episodes. None of the patients receiving high-flow oxygen therapy had an REI ≥5/hr. Two of the seven patients who received corticosteroids and one of the other three patients who did not receive this medication had an REI ≥5/hr. Although low- or high-flow oxygen therapy was provided, all patients had episodes of oxygen saturation (SpO2) <90%. Two of the three patients with an REI ≥5/hr underwent in-laboratory polysomnography. The patients' Apnea-Hypopnea Index and REI obtained via polysomnography and respiratory polygraphy, respectively, were similar.ConclusionsIn a future trial to evaluate postextubation sleep apnea in critically ill patients, pre-stratification based on the use of corticosteroids and high-flow oxygen therapy should be considered.
Project description:Critically ill intensive care unit (ICU) patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decrease quality of life of survivors. Acute Quadriplegic Myopathy (AQM) is one of the most common neuromuscular disorders associated with ICU-acquired muscle weakness. Although there are no available treatments for the ICU-acquired muscle weakness, it has been demonstrated that early mobilization can improve its prognosis and functional outcomes. This study aims at improving our understanding of the effects of passive mechanical loading on skeletal muscle structure and function by using a unique experimental rat ICU model allowing analyses of the temporal sequence of changes in mechanically ventilated and pharmacologically paralyzed animals at durations varying from 6 h to 14 days. Results show that passive mechanical loading alleviated the muscle wasting and the loss of force-generation associated with the ICU intervention, resulting in a doubling of the functional capacity of the loaded vs. unloaded muscles after a 2-week ICU intervention. We demonstrated that the improved maintenance of muscle structure and function is likely a consequence of a reduced oxidative stress, and a reduced loss of the molecular motor protein myosin. A complex temporal gene expression pattern, delineated by microarray analysis, was observed with loading-induced changes in transcript levels of sarcomeric proteins, muscle developmental processes, stress response, ECM/cell adhesion proteins and metabolism. Thus, the results from this study show that passive mechanical loading alleviates the severe negative consequences on muscle structure and function associated with mechanical silencing in ICU patients, strongly supporting early and intense physical therapy in immobilized ICU patients. This study aims to unravel the effects of passive mechanical loading on skeletal muscle structure and function in an experimental rat ICU model at duration varying between 6h and 14 days. A total of 23 experimental female Sprague-Dawley rats were included in this study. The experimental rats were anaesthetized, treated with the neuromuscular blocking agent (NMBA) M-NM-1-cobrotoxin, mechanically ventilated and monitored for durations varying from 6h to 4 days (n=13), from 5 to 8 days (n=4), and from 9 to 14 days (n=6). The left leg of the animal was activated for 6 hours at the shortest duration and 12 hours per day at durations 12 hours and longer throughout the experiment, using a mechanical lever arm that produced a continuous passive maximal ankle joint flexions-extensions at a speed of 13.3 cycles per minute. Muscle biopsies were obtained from gastrocnemius muscle (proximal part) immediately after euthanasia, were quickly frozen in liquid propane cooled by liquid nitrogen, and stored at -80M-BM-0C. RNA was extracted.
Project description:BACKGROUND:Strained intensive care unit (ICU) capacity represents a supply-demand mismatch in ICU care. Limited data have explored health care worker (HCW) perceptions of strain. METHODS:Cross-sectional survey of HCW across 16 Alberta ICUs. A web-based questionnaire captured data on demographics, strain definition, and sources, impact and strategies for management. RESULTS:658 HCW responded (33%; 95%CI, 32-36%), of which 452 were nurses (69%), 128 allied health (19%), 45 physicians (7%) and 33 administrators (5%). Participants (agreed/strongly agreed: 94%) reported that strain was best defined as "a time-varying imbalance between the supply of available beds, staff and/or resources and the demand to provide high-quality care for patients who may become or who are critically ill"; while some recommended defining "high-quality care", integrating "safety", and families in the definition. Participants reported significant contributors to strain were: "inability to discharge ICU patients due to lack of available ward beds" (97%); "increases in the volume" (89%); and "acuity and complexity of patients requiring ICU support" (88%). Strain was perceived to "increase stress levels in health care providers" (98%); and "burnout in health care providers" (96%). The highest ranked strategies were: "have more consistent and better goals-of-care conversations with patients/families outside of ICU" (95%); and "increase non-acute care beds" (92%). INTERPRETATION:Strain is perceived as common. HCW believe precipitants represent a mix of patient-related and operational factors. Strain is thought to have negative implications for quality of care, HCW well-being and workplace environment. Most indicated strategies "outside" of ICU settings were priorities for managing strain.