Unknown

Dataset Information

0

Portal Venous Metabolite Profiling After RYGB in Male Rats Highlights Changes in Gut-Liver Axis.


ABSTRACT: After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery's remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) blood from lean, Long Evans rats after RYGB vs sham surgery. We found that one-carbon metabolism (OCM), nitrogen metabolism, and arginine and proline metabolism were significantly enriched in PV blood. Nitrogen, OCM, and sphingolipid metabolism as well as ubiquinone biosynthesis were also overrepresented among metabolites uniquely affected in PV vs peripheral blood in RYGB-operated but not sham-operated animals. Peripheral blood demonstrated changes in AA metabolism, OCM, sphingolipid metabolism, and glycerophospholipid metabolism. Despite enrichment for many of the same pathways, the overall metabolite fingerprint of the 2 compartments did not correlate, highlighting a unique role for PV metabolomic profiling as a window into gut metabolism. AA metabolism and OCM were enriched in peripheral blood both from humans and lean rats after RYGB, demonstrating that these conserved pathways might represent mechanisms for clinical improvement elicited by the surgery in patients. Together, our data provide novel insight into RYGB's effects on the gut-liver axis and highlight a role for OCM as a key metabolic pathway affected by RYGB.

SUBMITTER: Stefater MA 

PROVIDER: S-EPMC7033034 | biostudies-literature | 2020 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Portal Venous Metabolite Profiling After RYGB in Male Rats Highlights Changes in Gut-Liver Axis.

Stefater Margaret A MA   Pacheco Julian A JA   Bullock Kevin K   Pierce Kerry K   Deik Amy A   Liu Enju E   Clish Clary C   Stylopoulos Nicholas N  

Journal of the Endocrine Society 20200123 2


After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery's remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) bl  ...[more]

Similar Datasets

| S-EPMC6815800 | biostudies-literature
| S-EPMC7922951 | biostudies-literature
| S-EPMC7524357 | biostudies-literature
| S-EPMC7761232 | biostudies-literature
| S-EPMC7580221 | biostudies-literature
| S-EPMC5612110 | biostudies-literature
| S-EPMC7694268 | biostudies-literature
| S-EPMC6990444 | biostudies-literature
| S-EPMC7179186 | biostudies-literature
| S-EPMC5009611 | biostudies-literature