Project description:The SARS-CoV-2 pandemic persists with global repercussions. Initial COVID-19 symptoms encompass pneumonia, fever, myalgia, and fatigue. The human immune system produces IgM and IgG antibodies in response to SARS-CoV-2. Despite previous research, a comprehensive understanding of the interplay between clinical manifestations and humoral immune responses remains elusive. This study aims to scrutinize this association. 134 COVID-19 patients were enrolled, and stratified into mild, moderate, and severe symptom groups. Serum IgM and IgG levels were assessed thrice at one-month intervals using ELISA. The findings reveal significant elevation in serum IgG levels in moderate compared to mild cases (P < 0.001). Additionally, IgG production was significantly heightened in severe cases compared to both mild (P < 0.0001) and moderate (P < 0.05) groups. IgM and IgG levels peaked initially and diminished over time. While anti-SARS-CoV-2 antibodies are expected to confer protection, the direct correlation between IgG levels and symptom severity may arise from delayed immune activation, resulting in an intense antibody response in severe cases. Given evidence linking delayed immune function with a dysregulated innate immune response, comprehensive data collection should encompass not only serum IgG and IgM, but also early measurement of type I interferons at symptom onset. This could provide a more thorough understanding of COVID-19 progression.
Project description:Infection with SARS-CoV-2 has highly variable clinical manifestations, ranging from asymptomatic infection through to life-threatening disease. Host whole blood transcriptomics can offer unique insights into the biological processes underpinning infection and disease, as well as severity. We performed whole blood RNA-Sequencing of individuals with varying degrees of COVID-19 severity. We used differential expression analysis and pathway enrichment analysis to explore how the blood transcriptome differs between individuals with mild, moderate, and severe COVID-19, performing pairwise comparisons between groups.
Project description:Critical patients and intensive care unit (ICU) patients are the main population of COVID-19 deaths. Therefore, establishing a reliable method is necessary for COVID-19 patients to distinguish patients who may have critical symptoms from other patients. In this retrospective study, we firstly evaluated the effects of 54 laboratory indicators on critical illness and death in 3044 COVID-19 patients from the Huoshenshan hospital in Wuhan, China. Secondly, we identify the eight most important prognostic indicators (neutrophil percentage, procalcitonin, neutrophil absolute value, C-reactive protein, albumin, interleukin-6, lymphocyte absolute value and myoglobin) by using the random forest algorithm, and find that dynamic changes of the eight prognostic indicators present significantly distinct within differently clinical severities. Thirdly, our study reveals that a model containing age and these eight prognostic indicators can accurately predict which patients may develop serious illness or death. Fourthly, our results demonstrate that different genders have different critical illness rates compared with different ages, in particular the mortality is more likely to be attributed to some key genes (e.g. ACE2, TMPRSS2 and FURIN) by combining the analysis of public lung single cells and bulk transcriptome data. Taken together, we urge that the prognostic model and first-hand clinical trial data generated in this study have important clinical practical significance for predicting and exploring the disease progression of COVID-19 patients.
Project description:Using RNA-seq and high-resolution mass spectrometry we performed a comprehensive systems analysis on 128 plasma and leukocyte samples from hospitalized patients with or without COVID-19 (n=102 and 26 respectively) and with differing degrees of disease severity. We generated abundance measurements for over 17,000 transcripts, proteins, metabolites, and lipids and compiled them with clinical data into a curated relational database. This resource offers the unique opportunity to perform systems analysis and cross-ome correlations to both molecules and patient outcomes. In total 219 molecular features were mapped with high significance to COVID-19 status and severity, including those involved in processes such as complement system activation, dysregulated lipid transport, and B cell activation. In one example, we detected a trio of covarying molecules – citrate, plasmenyl-phosphatidylcholines, and gelsolin (GSN) – that offer both pathophysiological insight and potential novel therapeutic targets. Further, our data revealed in some cases, and supported in others, that several biological processes were dysregulated in COVID-19 patients including vessel damage, platelet activation and degranulation, blood coagulation, and acute phase response. For example, we observed that the coagulation-related protein, cellular fibronectin (cFN), was highly increased within COVID-19 patients and provide new evidence that the upregulated proteoform stems from endothelial cells, consistent with endothelial injury as a major activator of the coagulation cascade. The abundance of prothrombin, which is cleaved to form thrombin during clotting, was significantly reduced and correlated with severity and might help to explain the hyper coagulative environment of SARS-CoV-2 infection. From transcriptomic analysis of leukocytes, we concluded that COVID-19 patients with acute respiratory distress syndrome (ARDS) demonstrated a phenotype that overlapped with, but was distinct from, that found in patients with non-COVID-19-ARDS. To aid in the global efforts toward elucidation of disease pathophysiology and therapeutic development, we created a web-based tool with interactive visualizations allowing for easy navigation of this systems-level compendium of biomolecule abundance in relation to COVID-19 status and severity. Finally, we leveraged these multi-omic data to predict COVID-19 patient outcomes with machine learning, which highlighted the predictive power of these expansive molecular measurements beyond the standardized clinical estimate of 10-year survival Charlson score.
Project description:Genome-wide DNA methylation analysis of COVID-19 severity using the Illumina HumanMethylationEPIC microarray platform to analyze over 850,000 methylation sites, comparing COVID-19 patients with patients presenting with respiratory symptoms, but negative for COVID-19, using whole blood tissue.
Project description:BackgroundMost of the explanatory and prognostic models of COVID-19 lack of a comprehensive assessment of the wide COVID-19 spectrum of abnormalities. The aim of this study was to unveil novel biological features to explain COVID-19 severity and prognosis (death and disease progression).MethodsA predictive model for COVID-19 severity in 121 patients was constructed by ordinal logistic regression calculating odds ratio (OR) with 95% confidence intervals (95% CI) for a set of clinical, immunological, metabolomic, and other biological traits. The accuracy and calibration of the model was tested with the area under the curve (AUC), Somer's D, and calibration plot. Hazard ratios with 95% CI for adverse outcomes were calculated with a Cox proportional-hazards model.ResultsThe explanatory variables for COVID-19 severity were the body mass index (BMI), hemoglobin, albumin, 3-Hydroxyisovaleric acid, CD8+ effector memory T cells, Th1 cells, low-density granulocytes, monocyte chemoattractant protein-1, plasma TRIM63, and circulating neutrophil extracellular traps. The model showed an outstanding performance with an optimism-adjusted AUC of 0.999, and Somer's D of 0.999. The predictive variables for adverse outcomes in COVID-19 were severe and critical disease diagnosis, BMI, lactate dehydrogenase, Troponin I, neutrophil/lymphocyte ratio, serum levels of IP-10, malic acid, 3, 4 di-hydroxybutanoic acid, citric acid, myoinositol, and cystine.ConclusionsHerein, we unveil novel immunological and metabolomic features associated with COVID-19 severity and prognosis. Our models encompass the interplay among innate and adaptive immunity, inflammation-induced muscle atrophy and hypoxia as the main drivers of COVID-19 severity.
Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we show that of the 84 miRNAs analysed, 8 are differently express in plasma and saliva of SD. In particular: 1) miRNAs let-7a-5p, let-7b-5p, let-7c-5p are significantly downregulated; and 2) miR-23a and b, miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, miR-146) are significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9 and TNFα) and chemokines (CCL2 and RANTES) increase in both saliva and plasma of SD and MD. Notably, disease severity correlates with NA and immune activation. Monitoring these parameters could help to predict disease outcome and identify new markers of disease progression.
Project description:The oral mucosa is the first site of SARS-CoV-2 entry and replication, and it plays a central role in the early defense against infection. Thus, SARS-CoV-2 viral load, miRNAs, cytokines, and neutralizing activity (NA) were assessed in saliva and plasma from mild (MD) and severe (SD) COVID-19 patients. Here we show that of the 84 miRNAs analysed, 8 are differently express in plasma and saliva of SD. In particular: 1) miRNAs let-7a-5p, let-7b-5p, let-7c-5p are significantly downregulated; and 2) miR-23a and b, miR-29c, as well as three immunomodulatory miRNAs (miR-34a-5p, miR-181d-5p, miR-146) are significantly upregulated. The production of pro-inflammatory cytokines (IL-1β, IL-2, IL-6, IL-8, IL-9 and TNFα) and chemokines (CCL2 and RANTES) increase in both saliva and plasma of SD and MD. Notably, disease severity correlates with NA and immune activation. Monitoring these parameters could help to predict disease outcome and identify new markers of disease progression.