Unknown

Dataset Information

0

Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction.


ABSTRACT: Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times  T2* and T2 and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matter (WM) strongly depend on nerve fiber orientation, mq-BOLD derived rOEF is expected to be affected as well. To investigate fiber orientation related rOEF artefacts, we present a methodological study characterizing anisotropy effects of WM as measured by diffusion tensor imaging (DTI) on mq-BOLD in 30 healthy volunteers. Using a 3T clinical MRI-scanner, we performed a comprehensive correlation of all parameters ( T2*, T2, R2', rCBV, rOEF, where R2'=1/ T2*-1/T2) with DTI-derived fiber orientation towards the main magnetic field (B0). Our results confirm strong dependencies of transverse relaxation and rCBV on the nerve fiber orientation towards B0, with anisotropy-driven variations up to 37%. Comparably weak orientation-dependent variations of mq-BOLD derived rOEF (3.8%) demonstrate partially counteracting influences of R2' and rCBV effects, possibly suggesting applicability of rOEF as an oxygenation sensitive biomarker. However, unresolved issues warrant caution when applying mq-BOLD to WM.

SUBMITTER: Kaczmarz S 

PROVIDER: S-EPMC7168796 | biostudies-literature | 2020 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterizing white matter fiber orientation effects on multi-parametric quantitative BOLD assessment of oxygen extraction fraction.

Kaczmarz Stephan S   Göttler Jens J   Zimmer Claus C   Hyder Fahmeed F   Preibisch Christine C  

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 20190405 4


Relative oxygen extraction fraction (rOEF) is a fundamental indicator of cerebral metabolic function. An easily applicable method for magnetic resonance imaging (MRI) based rOEF mapping is the multi-parametric quantitative blood oxygenation level dependent (mq-BOLD) approach with separate acquisitions of transverse relaxation times  T2* and T<sub>2</sub> and dynamic susceptibility contrast (DSC) based relative cerebral blood volume (rCBV). Given that transverse relaxation and rCBV in white matte  ...[more]

Similar Datasets

| S-EPMC7730517 | biostudies-literature
| S-EPMC3494918 | biostudies-literature
| S-EPMC10588655 | biostudies-literature
| S-EPMC7821018 | biostudies-literature
| S-EPMC4482659 | biostudies-literature
| S-EPMC10337202 | biostudies-literature
| S-EPMC4679248 | biostudies-literature
| S-EPMC4575699 | biostudies-literature
| S-EPMC7722021 | biostudies-literature
| S-EPMC3187858 | biostudies-literature