Project description:This multi-center study will compare multi-target DNA and quantitative FIT stool-based testing to colonoscopy in individuals with Cystic Fibrosis (CF) undergoing colon cancer screening with colonoscopy. The primary endpoint is detection of any adenomas, including advanced adenomas and colorectal cancer (CRC).
Project description:Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) is a major cause of cystic fibrosis (CF), one of the most common inherited childhood diseases. ΔF508 CFTR is a trafficking mutant that is retained in the endoplasmic reticulum (ER) and unable to reach the plasma membrane. Efforts to enhance exit of ΔF508 CFTR from the ER and improve its trafficking are of utmost importance for the development of treatment strategies. Using protein interaction profiling and global bioinformatics analysis we revealed mammalian target of rapamycin (mTOR) signalling components to be associated with ∆F508 CFTR. Our results demonstrated upregulated mTOR activity in ΔF508 CF bronchial epithelial (CFBE41o-) cells. Inhibition of the Phosphatidylinositol 3-kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) pathway with 6 different inhibitors demonstrated an increase in CFTR stability and expression. Mechanistically, we discovered the most effective inhibitor, MK-2206 exerted a rescue effect by restoring autophagy in ΔF508 CFBE41o- cells. We identified Bcl-2-associated athanogene 3 (BAG3), a regulator of autophagy and aggresome clearance to be a potential mechanistic target of MK-2206. These data further link the CFTR defect to autophagy deficiency and demonstrate the potential of the PI3K/Akt/mTOR pathway for therapeutic targeting in CF.
Project description:Cystic fibrosis (CF) is a lethal genetic disease characterized by progressive lung damage and airway obstruction. The majority of patients demonstrate airway hyperresponsiveness (AHR), which is associated with more rapid lung function decline. Recent studies in the neonatal CF pig demonstrated airway smooth muscle (ASM) dysfunction. These findings, combined with observed CF transmembrane conductance regulator (CFTR) expression in ASM, suggest that a fundamental defect in ASM function contributes to lung function decline in CF. One established driver of AHR and ASM dysfunction is transforming growth factor (TGF) β1, a genetic modifier of CF lung disease. Prior studies demonstrated that TGFβ exposure in CF mice drives features of CF lung disease, including goblet cell hyperplasia and abnormal lung mechanics. CF mice displayed aberrant responses to pulmonary TGFβ, with elevated PI3K signaling and greater increases in lung resistance compared with controls. Here, we show that TGFβ drives abnormalities in CF ASM structure and function through PI3K signaling that is enhanced in CFTR-deficient lungs. CF and non-CF mice were exposed intratracheally to an adenoviral vector containing the TGFβ1 cDNA, empty vector, or PBS only. We assessed methacholine-induced AHR, bronchodilator response, and ASM area in control and CF mice. Notably, CF mice demonstrated enhanced AHR and bronchodilator response with greater ASM area increases compared with non-CF mice. Furthermore, therapeutic inhibition of PI3K signaling mitigated the TGFβ-induced AHR and goblet cell hyperplasia in CF mice. These results highlight a latent AHR phenotype in CFTR deficiency that is enhanced through TGFβ-induced PI3K signaling.
Project description:Cystic fibrosis is an autosomal recessive, monogenetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The gene defect was first described 25 years ago and much progress has been made since then in our understanding of how CFTR mutations cause disease and how this can be addressed therapeutically. CFTR is a transmembrane protein that transports ions across the surface of epithelial cells. CFTR dysfunction affects many organs; however, lung disease is responsible for the vast majority of morbidity and mortality in patients with cystic fibrosis. Prenatal diagnostics, newborn screening and new treatment algorithms are changing the incidence and the prevalence of the disease. Until recently, the standard of care in cystic fibrosis treatment focused on preventing and treating complications of the disease; now, novel treatment strategies directly targeting the ion channel abnormality are becoming available and it will be important to evaluate how these treatments affect disease progression and the quality of life of patients. In this Primer, we summarize the current knowledge, and provide an outlook on how cystic fibrosis clinical care and research will be affected by new knowledge and therapeutic options in the near future. For an illustrated summary of this Primer, visit: http://go.nature.com/4VrefN.
Project description:Summary: CF patients homozygous for the DF08 DF08 genotype present a full range of phenotypic manifestations that exist within the pulmonary system. This project aims to identify candidate genes that influence the severity of pulmonary disease Hypothesis: The goal is to find genes predictive of progression in CF. More information can be found at http://www.hopkins-genomics.org/cf/cf001/index.html Keywords: other
Project description:Mutations of the CFTR gene cause cystic fibrosis (CF), the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF.
Project description:Our laboratory has held a long interest in the glycosylation changes seen on the surface of airway epithelia of patients with the disease cystic fibrosis (CF). Experiments from our laboratory have detailed a CF glycosylation phenotype of increased Fuca1,3/4 and decreased Fuca1,2 and sialic acid on the surfaces of immortalized and primary CF cells compared to non-CF cells. Further, we have shown that gene transfer and subsequent expression of a wild type CF plasmid in CF airway cells results in correction or reversal of this glycosylation phenotype. We hypothesize that the changes in glycosylation seen in CF cells are key in the pathophysiology of the cystic fibrosis airway disease. For example, it has been shown that Pseudomonas aeruginosa, a bacterium that has a predilection for colonizing CF airways, adheres to asialylated glycolipids and glycoconjugates with terminal Fuca1,3/4. One focus of our laboratory is to elucidate the etiology of the glycosylation changes seen in CF cells and the mechanism by which these changes are reversed by wild type CFTR gene transfer. We propose to study the gene expression of immortalized and primary CF and non-CF airway epithelial cells: 1. CF/T43 vs. BEAS-2B cells. These are two widely used immortalized airway cell lines that we have used extensively in the past. 2. C38 cells; C38 cells are IB3 cells expressing wtCFTR. The experimental focus is to elucidate the etiology of the glycosylation changes seen in Cystic Fibrosis (CF) cells and the mechanism by which these changes are reversed by wild type CFTR gene transfer. To do so, the gene expression of immortalized and primary CF and non-CF airway epithelial cells were compared and studied. Cell lines used were CF/T43 and BEAS-2B, both widely used immortalized airway cell lines. Other cell lines studied included C38 cell lines (clonal derivatives of IB3 cells expressing wtCFTR).
Project description:Bronchiectasis is usually classified as cystic fibrosis (CF) related or CF unrelated (non-CF); the latter is not considered an orphan disease any more, even in developed countries. Irrespective of the underlying etiology, bronchiectasis is the result of interaction between host, pathogens, and environment. Vitamin D is known to be involved in a wide spectrum of significant immunomodulatory effects such as down-regulation of pro-inflammatory cytokines and chemokines. Respiratory epithelial cells constitutively express 1?-hydroxylase leading to the local transformation of the inactive 25(OH)-vitamin D to the active 1,25(OH)2-vitamin D. The latter through its autocrine and paracrine functions up-regulates vitamin D dependent genes with important consequences in the local immunity of lungs. Despite the scarcity of direct evidence on the involvement of vitamin D deficiency states in the development of bronchiectasis in either CF or non-CF patients, it is reasonable to postulate that vitamin D may play some role in the pathogenesis of lung diseases and especially bronchiectasis. The potential contribution of vitamin D deficiency in the process of bronchiectasis is of particular clinical importance, taking into consideration the increasing prevalence of vitamin D deficiency worldwide and the significant morbidity of bronchiectasis. Given the well-established association of vitamin D deficiency with increased inflammation, and the indicative evidence for harmful consequences in lungs, it is intriguing to speculate that the administration of vitamin D supplementation could be a reasonable and cost effective supplementary therapeutic approach for children with non-CF bronchiectasis. Regarding CF patients, maybe in the future as more data become available, we have to re-evaluate our policy on the most appropriate dosage scheme for vitamin D.
Project description:BackgroundThe prevalence of fungal disease in cystic fibrosis (CF) and non-CF bronchiectasis is increasing and the clinical spectrum is widening. Poor sensitivity and a lack of standard diagnostic criteria renders interpretation of culture results challenging. In order to develop effective management strategies, a more accurate and comprehensive understanding of the airways fungal microbiome is required. The study aimed to use DNA sequences from sputum to assess the load and diversity of fungi in adults with CF and non-CF bronchiectasis.MethodsNext generation sequencing of the ITS2 region was used to examine fungal community composition (n = 176) by disease and underlying clinical subgroups including allergic bronchopulmonary aspergillosis, chronic necrotizing pulmonary aspergillosis, non-tuberculous mycobacteria, and fungal bronchitis. Patients with no known active fungal disease were included as disease controls.ResultsITS2 sequencing greatly increased the detection of fungi from sputum. In patients with CF fungal diversity was lower, while burden was higher than those with non-CF bronchiectasis. The most common operational taxonomic unit (OTU) in patients with CF was Candida parapsilosis (20.4%), whereas in non-CF bronchiectasis sputum Candida albicans (21.8%) was most common. CF patients with overt fungal bronchitis were dominated by Aspergillus spp., Exophiala spp., Candida parapsilosis or Scedosporium spp.ConclusionThis study provides a framework to more accurately characterize the extended spectrum of fungal airways diseases in adult suppurative lung diseases.
Project description:BackgroundBronchiectasis is associated with morbidity, low exercise capacity and poor quality of life. There is a paucity of data on exercise capacity using cardiopulmonary exercise test (CPET) in non-cystic fibrosis (CF) bronchiectasis. Our aim was to compare exercise capacity using CPET in CF and non-CF bronchiectasis patients.MethodsCross-sectional retrospective/prospective controlled study assessing CPET using cycle ergometer. Exercise parameters and computed tomography (CT) findings were compared. Results: Hundred two patients with bronchiectasis and 88 controls were evaluated; 49 CF (age 19.7 ± 9.7 y/o, FEV1%predicted 70.9 ± 20.5%) and 53 non-CF (18.6 ± 10.6 y/o, FEV1%predicted 68.7 ± 21.5%). Peak oxygen uptake (peak [Formula: see text]) was similar and relatively preserved in both groups (CF 1915.5±702.0; non-CF 1740±568; control 2111.0±748.3 mL/min). Breathing limitation was found in the two groups vs. control; low breathing reserve (49% in CF; 43% non-CF; 5% control) and increased [Formula: see text] (CF 31.4±4.1, non-CF 31.7±4.1 and control 27.2 ± 2.8). Oxygen pulse was lower in the non-CF; whereas a linear relationship between peak [Formula: see text] vs. FEV1 and vs. FVC was found only for CF. CT score correlated with [Formula: see text] and negatively correlated with [Formula: see text] and post exercise oxygen saturation (SpO2).ConclusionsCPET parameters may differ between CF and non-CF bronchiectasis. However, normal exercise capacity may be found unrelated to the etiology of the bronchiectasis. Anatomical changes in CT are associated with functional finding of increased [Formula: see text] and decreased SpO2. Larger longitudinal studies including cardiac assessment are needed to better study exercise capacity in different etiologies of non-CF bronchiectasis.Trial registrationClinicalTrials.gov, registration number: NCT03147651.