Project description:Nucleocapsid protein (N protein) is the most abundant protein in SARS-CoV2 and is highly conserved, and there are no homologous proteins in the human body, making it an ideal biomarker for the early diagnosis of SARS-CoV2. However, early detection of clinical specimens for SARS-CoV2 remains a challenge due to false-negative results with viral RNA and host antibodies based testing. In this manuscript, a microfluidic chip with femtoliter-sized wells was fabricated for the sensitive digital detection of N protein. Briefly, β-galactosidase (β-Gal)-linked antibody/N protein/aptamer immunocomplexes were formed on magnetic beads (MBs). Afterwards, the MBs and β-Gal substrate fluorescein-di-β-d-galactopyranoside (FDG) were injected into the chip together. Each well of the chip would only hold one MB as confined by the diameter of the wells. The MBs in the wells were sealed by fluorocarbon oil, which confines the fluorescent (FL) product generated from the reaction between β-Gal and FDG in the individual femtoliter-sized well and creates a locally high concentration of the FL product. The FL images of the wells were acquired using a conventional inverted FL microscope. The number of FL wells with MBs (FL wells number) and the number of wells with MBs (MBs wells number) were counted, respectively. The percentage of FL wells was calculated by dividing (FL wells number) by (MBs wells number). The higher the percentage of FL wells, the higher the N protein concentration. The detection limit of this digital method for N protein was 33.28 pg/mL, which was 300 times lower than traditional double-antibody sandwich based enzyme-linked immunosorbent assay (ELISA).
Project description:Gold standard detection of SARS-CoV-2 by reverse transcription quantitative PCR (RT-qPCR) can achieve ultrasensitive viral detection down to a few RNA copies per sample. Yet, the lengthy detection and labor-intensive protocol limit its effectiveness in community screening. In view of this, a structural switching electrochemical aptamer-based biosensor (E-AB) targeting the SARS-CoV-2 nucleocapsid (N) protein was developed. Four N protein-targeting aptamers were characterized on an electrochemical cell configuration using square wave voltammetry (SWV). The sensor was investigated in an artificial saliva matrix optimizing the aptamer anchoring orientation, SWV interrogation frequency, and target incubation time. Rapid detection of the N protein was achieved within 5 min at a low nanomolar limit of detection (LOD) with high specificity. Specific N protein detection was also achieved in simulated positive saliva samples, demonstrating its feasibility for saliva-based rapid diagnosis. Further research will incorporate novel signal amplification strategies to improve sensitivity for early diagnosis.
Project description:The severe acute respiratory syndrome coronavirus (SARS-CoV-2) has infected millions of individuals and continues to be a major health concern worldwide. While reverse transcription-polymerase chain reaction remains a reliable method for detecting infections, limitations of this technology, particularly cost and the requirement of a dedicated laboratory, prevent rapid viral monitoring. Antigen tests filled this need to some extent but with limitations including sensitivity and specificity, particularly against emerging variants of concern. Here, we developed aptamers against the SARS-CoV-2 Nucleocapsid protein to complement or replace antibodies in antigen detection assays. As detection reagents in ELISA-like assays, our DNA aptamers were able to detect as low as 150 pg/mL of the protein and under 150 k copies of inactivated SARS-CoV-2 Wuhan Alpha strain in viral transport medium with little cross-reactivity to other human coronaviruses (HCoVs). Further, our aptamers were reselected against the SARS-CoV-2 Omicron variant of concern, and we found two sequences that had a more than two-fold increase in signal compared to our original aptamers when used as detection reagents against protein from the Omicron strain. These findings illustrate the use of aptamers as promising alternative detection reagents that may translate for use in current tests and our findings validate the method for the reselection of aptamers against emerging viral strains.
Project description:Early detection and identification of SARS-CoV-infected patients and actions to prevent transmission are absolutely critical to prevent another SARS outbreak. Antibodies that specifically recognize the SARS-CoV spike and nucleocapsid proteins may provide a rapid screening method to allow accurate identification and isolation of patients with the virus early in their infection. For this reason, we raised peptide-induced polyclonal antibodies against SARS-CoV spike protein and polyclonal antibodies against SARS-CoV nucleocapsid protein using 6x His nucleocapsid recombinant protein. Western blot analysis and immunofluorescent staining showed that these antibodies specifically recognized SARS-CoV.
Project description:The rapid spread of SARS-CoV-2 infection throughout the world led to a global public health and economic crisis triggering an urgent need for the development of low-cost vaccines, therapies and high-throughput detection assays. In this work, we used a combination of Ideal-Filter Capillary Electrophoresis SELEX (IFCE-SELEX), Next Generation Sequencing (NGS) and binding assays to isolate and validate single-stranded DNA aptamers that can specifically recognize the SARS-CoV-2 Spike glycoprotein. Two selected non-competing DNA aptamers, C7 and C9 were successfully used as sensitive and specific biological recognition elements for the development of electrochemical and fluorescent aptasensors for the SARS-CoV-2 Spike glycoprotein with detection limits of 0.07 fM and 41.87 nM, respectively.
Project description:RNA detection is important in diverse diagnostic and analytical applications. RNAs can be rapidly detected using molecular beacons, which fluoresce upon hybridizing to a target RNA but require oligonucleotides with complex fluorescent dye and quencher conjugations. Here, we describe a simplified method for rapid fluorescence detection of a target RNA using simple unmodified DNA oligonucleotides. To detect RNA, we developed Lettuce, a fluorogenic DNA aptamer that binds and activates the fluorescence of DFHBI-1T, an otherwise nonfluorescent molecule that resembles the chromophore found in green fluorescent protein. Lettuce was selected from a randomized DNA library based on binding to DFHBI-agarose. We further show that Lettuce can be split into two separate oligonucleotide components, which are nonfluorescent on their own but become fluorescent when their proximity is induced by a target RNA. We designed several pairs of split Lettuce fragments that contain an additional 15-20 nucleotides that are complementary to adjacent regions of the SARS-CoV-2 RNA, resulting in Lettuce fluorescence only in the presence of the viral RNA. Overall, these studies describe a simplified RNA detection approach using fully unmodified DNA oligonucleotides that reconstitute the Lettuce aptamer templated by RNA.
Project description:Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NPNTD) from SARS-CoV-2 using small-angle X-ray scattering and transmission electron microscopy. Our solution-based results distinguished the mAbs' flexibility and how this flexibility affects the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NPNTD, we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the antigen-binding fragments is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich enzyme-linked immunosorbent assay, we show that rigid mAb-pairings with linear polymerization led to increased NPNTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices, which are critical for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Project description:Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NP NTD ) from SARS-CoV-2 using small angle X-ray scattering (SAXS). Our solution-based results distinguished the mAbs' flexibility and how this flexibility impacts the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NP NTD , we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the Fabs is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich ELISA, we show the rigid mAb-pairings with linear polymerization led to increased NP NTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices (LFA), key for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.
Project description:The goal of this work was to develop recombinantly expressed variable domains derived from camelid heavy-chain antibodies known as single-domain antibodies (sdAbs) directed against the SARS-CoV-2 nucleocapsid protein for incorporation into detection assays. To achieve this, a llama was immunized using a recombinant SARS-CoV-2 nucleocapsid protein and an immune phage-display library of variable domains was developed. The sdAbs selected from this library segregated into five distinct sequence families. Three of these families bind to unique epitopes with high affinity, low nM to sub-nM KD, as determined by surface plasmon resonance. To further enhance the utility of these sdAbs for the detection of nucleocapsid protein, homobivalent and heterobivalent genetic fusion constructs of the three high-affinity sdAbs were prepared. The effectiveness of the sdAbs for the detection of nucleocapsid protein was evaluated using MagPlex fluid array assays, a multiplexed immunoassay on color-coded magnetic microspheres. Using the optimal bivalent pair, one immobilized on the microsphere and the other serving as the biotinylated recognition reagent, a detection limit as low as 50 pg/mL of recombinant nucleocapsid and of killed virus down to 1.28 × 103 pfu/mL was achieved. The sdAbs described here represent immune reagents that can be tailored to be optimized for a number of detection platforms and may one day aid in the detection of SARS-CoV-2 to assist in controlling the current pandemic.
Project description:SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has spurred the urgent need for practical diagnostics with high sensitivity and selectivity. Although advanced diagnostic tools have emerged to efficiently control pandemics, they still have costly limitations owing to their reliance on antibodies or enzymes and require high-tech equipment. Therefore, there is still a need to develop rapid and low-cost diagnostics with high sensitivity and selectivity. In this study, we generated aptamer display particles (AdP), enabling easy fabrication of a SARS-CoV-2 detection matrix through particle PCR, and applied it to diagnosis using fluorometric and colorimetric assays. We designed two AdPs, C1-AdP and C4-AdP, displayed with SpS1-C1 and SpS1-C4 aptamers, respectively, and showed their high binding ability against SARS-CoV-2 spike protein with a concentration-dependent fluorescence increase. This enabled detection even at low concentrations (0.5 nM). To validate its use as a diagnostic tool for SARS-CoV-2, we designed a sandwich-type assay using two AdPs and high-quality aptamers targeting SARS-CoV-2 pseudoviruses. The fluorometric assay achieved a detection limit of 3.9 × 103 pseudoviruses/mL. The colorimetric assay using an amplification approach exhibited higher sensitivity, with a detection limit of 1 × 101 pseudoviruses/mL, and a broad range of over four orders of magnitude was observed.