Project description:The current global pandemic due to the SARS-CoV-2 has pushed the limits of global health systems across all aspects of clinical care, including laboratory diagnostics. Supply chain disruptions and rapidly-shifting markets have resulted in flash-scarcity of commercial laboratory reagents; this has motivated health care providers to search for alternative workflows to cope with the international increase in demand for SARS-CoV-2 testing. The aim of this study is to present a reproducible workflow for real time RT-PCR SARS-CoV-2 testing using OT-2 open-source liquid-handling robots (Opentrons, NY). We have developed a framework that includes a code template which is helpful for building different stand-alone robotic stations, capable of performing specific protocols. Such stations can be combined together to create a complex multi-stage workflow, from sample setup to real time RT-PCR. Using our open-source code, it is easy to create new stations or workflows from scratch, adapt existing templates to update the experimental protocols, or to fine-tune the code to fit specific needs. Using this framework, we developed the code for two different workflows and evaluated them using external quality assessment (EQA) samples from the European Molecular Genetics Quality Network (EMQN). The affordability of this platform makes automated SARS-CoV-2 PCR testing accessible for most laboratories and hospitals with qualified bioinformatics personnel. This platform also allows for flexibility, as it is not dependent on any specific commercial kit, and thus it can be quickly adapted to protocol changes, reagent, consumable shortages, or any other temporary material constraints.
Project description:The emergence of the coronavirus 2019 (COVID-19) arose the need for rapid, accurate and massive virus detection methods to control the spread of infectious diseases. In this work, a device, deployable in non-medical environments, has been developed for the detection of non-amplified SARS-CoV-2 RNA. A SARS-CoV-2 specific probe was designed and covalently immobilized at the surface of glass slides to fabricate a DNA biosensor. The resulting system was integrated in a microfluidic platform, in which viral RNA was extracted from non-treated human saliva, before hybridizing at the surface of the sensor. The formed DNA/RNA duplex was detected in presence of SYBR Green I using an opto-electronic system, based on a high-power LED and a photo multiplier tube, which convert the emitted fluorescence into an electrical signal that can be processed in less than 10 min. The limit of detection of the resulting microfluidic platform reached six copies of viral RNA per microliter of sample (equal to 10 aM) and satisfied the safety margin. The absence of non-specific adsorption and the selectivity for SARS-CoV-2 RNA were established. In addition, the designed device could be applicable for the detection of a variety of viruses by simple modification of the immobilized probe.
Project description:As three SARS-CoV-2 vaccines come to market in Europe and North America in the winter of 2020-2021, distribution networks will be in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation is critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs require that distribution is prioritized to the elderly, health-care workers, teachers, essential workers, and individuals with co-morbidities putting them at risk of severe clinical progression. Here, we evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not be included in the first round of vaccination. And, we account for current age-specific immune patterns in both states. We find that allocating a substantial proportion ( > 75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. As we do not explicitly model other high mortality groups, this result on vaccine allocation applies to all groups at high risk of mortality if infected. Our analysis confirms that for an easily transmissible respiratory virus, allocating a large majority of vaccinations to groups with the highest mortality risk is optimal. Our analysis assumes that health systems during winter 2020-2021 have equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and will result in 1% to 2% reductions in cumulative hospitalizations and deaths by mid-2021. Assuming high vaccination coverage ( > 28%) and no major relaxations in distancing, masking, gathering size, or hygiene guidelines between now and spring 2021, our model predicts that a combination of vaccination and population immunity will lead to low or near-zero transmission levels by the second quarter of 2021.
Project description:Genome browsers are widely used for individually exploring various types of genomic data. A handful of genome browsers offer limited tools for collaboration among multiple users. Here, we describe PBrowse, an integrated real-time collaborative genome browser that enables multiple users to simultaneously view and access genomic data, thereby harnessing the wisdom of the crowd. PBrowse is based on the Dalliance genome browser and has a re-designed user and data management system with novel collaborative functionalities, including real-time collaborative view, track comment and an integrated group chat feature. Through the Distributed Annotation Server protocol, PBrowse can easily access a wide range of publicly available genomic data, such as the ENCODE data sets. We argue that PBrowse represents a paradigm shift from using a genome browser as a static data visualization tool to a platform that enables real-time human-human interaction and knowledge exchange in a collaborative setting. PBrowse is available at http://pbrowse.victorchang.edu.au, and its source code is available via an open source BSD 3 license at http://github.com/VCCRI/PBrowse.
Project description:Visual detection of nucleic acids is important to diagnose the serious acute infectious diseases such as coronavirus disease 2019 (COVID-19). During this pandemic, reliable visual detection kits have been in high demand for screening and prevention of the virus. While developing these visual detection kits, a real-time monitoring platform is usually applied to study the amplification and detection processes of nucleic acids and optimize the detecting conditions. Herein, we developed a real-time monitoring platform of colorimetric loop-mediated isothermal amplification (LAMP) to investigate the amplification and detection processes of nucleic acids. Using this platform, we could obtain the real-time amplification curves, and optimize the reaction temperature, color change, and detection time. Based on the optimized conditions, a visual detection kit for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was successfully developed with a sensitivity of 102 copies µL−1 in 12 min. This real-time monitoring platform has advantages of simple construction, steady performance, high sensitivity, and outstanding anti-pollution capability, and could replace the traditional colorimetric methods by photographing and reading values. This platform would accelerate the development of visual detection kits for colorimetric LAMP, help to explore the amplification and transcription of nucleic acids, and provide support for the prevention of emerging biological threats. Graphical abstract A real-time monitoring platform was developed for colorimetric LAMP, and the amplification curves for visual detection kits could be obtained to replace the traditional method of photographing.Image, graphical abstract
Project description:The mRNA-1273 Moderna COVID-19 vaccine was introduced to combat the COVID-19 global pandemic in 2020. Although the safety of the vaccine has been investigated worldwide, real-world safety data is scarce in Japan. An online, real-time survey of adverse events following immunization (AEFIs) with mRNA-1273 was conducted in the setting of a workplace vaccination program at the School of Pharmacy, Keio University from 26 June 2021, to 11 June 2022. Participants were requested to take four surveys during a seven-day follow-up period after each of the first, second, and third booster doses. The maximum number of responses, from 301 respondents, was obtained on day 0 (vaccination date) for the first dose. 98% of respondents reported local and systemic AEFIs for the second dose on day 1. No noticeable difference in local reactions was seen among the three doses. Females reported more AEFIs than males, and the young group (18-29 years) reported a higher rate than the middle age group (≥30 years) after the first dose. Age and gender differences in rates decreased at the second and third doses. This survey confirmed that the safety profile of mRNA-1273 in a real-world setting was similar to that derived from the clinical trials, and that the agent was well-tolerated.
Project description:BackgroundWhen three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020-2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression.MethodsWe evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020-2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff.ResultsWe find that allocating a substantial proportion (>75%) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021.ConclusionsAssuming high vaccination coverage (>28%) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021.
Project description:Real-time surveillance of airborne SARS-CoV-2 virus is a technological gap that has eluded the scientific community since the beginning of the COVID-19 pandemic. Offline air sampling techniques for SARS-CoV-2 detection suffer from longer turnaround times and require skilled labor. Here, we present a proof-of-concept pathogen Air Quality (pAQ) monitor for real-time (5 min time resolution) direct detection of SARS-CoV-2 aerosols. The system synergistically integrates a high flow (~1000 lpm) wet cyclone air sampler and a nanobody-based ultrasensitive micro-immunoelectrode biosensor. The wet cyclone showed comparable or better virus sampling performance than commercially available samplers. Laboratory experiments demonstrate a device sensitivity of 77-83% and a limit of detection of 7-35 viral RNA copies/m3 of air. Our pAQ monitor is suited for point-of-need surveillance of SARS-CoV-2 variants in indoor environments and can be adapted for multiplexed detection of other respiratory pathogens of interest. Widespread adoption of such technology could assist public health officials with implementing rapid disease control measures.
Project description:The explosion of SARS-CoV-2 infections in 2020 prompted a flurry of activity in vaccine development and exploration of various vaccine platforms, some well-established and some new. Phage-based vaccines were described previously, and we explored the possibility of using mycobacteriophages as a platform for displaying antigens of SARS-CoV-2 or other infectious agents. The potential advantages of using mycobacteriophages are that a large and diverse variety of them have been described and genomically characterized, engineering tools are available, and there is the capacity to display up to 700 antigen copies on a single particle approximately 100 nm in size. The phage body may itself be a good adjuvant, and the phages can be propagated easily, cheaply, and to high purity. Furthermore, the recent use of these phages therapeutically, including by intravenous administration, suggests an excellent safety profile, although efficacy can be restricted by neutralizing antibodies. We describe here the potent immunogenicity of mycobacteriophage Bxb1, and Bxb1 recombinants displaying SARS-CoV-2 Spike protein antigens.
Project description:Effective vaccine development for global outbreaks, such as the coronavirus disease 2019 (COVID-19), has been successful in the short run. However, the currently available vaccines have been associated with a higher frequency of adverse effects compared with other general vaccines. In this study, the possibility of an oral bacteria-based vaccine that can be safely used as a platform for large-scale, long-term immunization was evaluated. A well-known Salmonella strain that was previously considered as a vaccine delivery candidate was used. Recombinant Salmonella cells expressing engineered viral proteins related with COVID-19 pathogenesis were engineered, and the formulation of the oral vaccine candidate strain was evaluated by in vitro and in vivo experiments. First, engineered S proteins were synthesized and cloned into expression vectors, which were than transformed into Salmonella cells. In addition, when orally administrated to mice, the vaccine promoted antigen-specific antibody production and cellular immunity was induced with no significant toxicity effects. These results suggest that Salmonella strains may represent a valuable platform for the development of an oral vaccine for COVID-19 as an alternative to tackle the outbreak of various mutated coronavirus strains and new infectious diseases in the future.