Project description:Background and objectives: Cardiovascular (CV) disease is a major cause of morbidity and mortality in chronic obstructive pulmonary disease (COPD). Patients with COPD have increased arterial stiffness, which may predict future CV risk. However, the development of arterial stiffness in COPD has not yet been studied prospectively. The Assessment of Risk in Chronic Airways Disease Evaluation (ARCADE) is a longitudinal study of CV risk and other comorbidities in COPD. The aims of this analysis were to explore factors associated with aortic pulse wave velocity (aPWV) at baseline and to describe the progression of aPWV in patients with COPD and comparators over two years.Materials andmethods: At baseline, 520 patients with COPD (confirmed by spirometry) and 150 comparators free from respiratory disease were assessed for body composition, blood pressure, aPWV, noninvasive measures of cardiac output, inflammatory biomarkers, and exercise capacity. This was repeated after two years, and mortality cases and causes were also recorded. Results: At baseline, aPWV was greater in COPD patients 9.8 (95% confidence interval (CI) 9.7-10.0) versus comparators 8.7 (8.5-9.1) m/s (p < 0.01) after adjustments for age, mean arterial pressure (MAP), and heart rate. Mean blood pressure was 98 ± 11 in COPD patients and 95 ± 10 mmHg in comparators at baseline (p = 0.004). After two years, 301 patients and 105 comparators were fully reassessed. The mean (95% CI) aPWV increased similarly in patients 0.44 (0.25-0.63) and comparators 0.46 (0.23-0.69) m/s, without a change in blood pressure. At the two-year follow-up, there were 29 (6%) deaths in COPD patients, with the majority due to respiratory causes, with an overall dropout of 43% of patients with COPD and 30% of comparators. Conclusions: This was the first large longitudinal study of CV risk in COPD patients, and we confirmed greater aPWV in COPD patients than comparators after adjustments for confounding factors. After two years, patients and comparators had a similar increase of almost 0.5 m/s aPWV.
Project description:This study aimed to assess the correlation between estimated pulse wave velocity (ePWV) and mortality rates related to all-cause and cardiovascular disease (CVD) among individuals diagnosed with chronic kidney disease (CKD) in the United States. A total of 4669 participants with CKD were identified from the National Health and Nutrition Examination Survey conducted between 1999 and 2018. We calculated the incidence of CKD using an estimated glomerular filtration rate (eGFR) of < 60 mL/min/1.73 m2. Our study examined the association between ePWV and mortality risk based on weighted Kaplan-Meier plots and multivariate Cox regression. Linear testing between ePWV and mortality from all causes and CVD was performed using restricted cubic splines and Cox regression. This study included 4669 patients with CKD from the NHANES, representing 37 million Americans with CKD. There was a mean age of 71.9 years, and 48.1% of participants were male. With every increase of 1 m/s in ePWV measurement, there is a corresponding 31% (hazard ratio [HR]: 1.31, 95% confidence interval [CI]: 1.28-1.34) increase in the rate of mortality from all causes and a 32% (HR: 1.32, 95% CI: 1.27-1.37) increase in the rate of mortality from CVD. A significantly higher rate of cardiovascular and all-cause mortality was observed in patients with CKD with elevated ePWV than in those with lower ePWV, as shown in the weighted Kaplan-Meier plots. Patients with CKD have a significant relationship between ePWV and all-cause and cardiovascular mortality.
Project description:ContextAlström syndrome is characterized by increased risk of cardiovascular disease from childhood.ObjectiveTo explore the association between risk factors for cardiovascular disease, aortic pulse wave velocity, and vascular events in Alström syndrome.DesignCross-sectional analyses with 5-year follow-up.SettingThe UK NHS nationally commissioned specialist clinics for Alström syndrome.PatientsThirty-one Alström patients undertook vascular risk assessment, cardiac studies, and aortic pulse wave velocity measurement. Subsequent clinical outcomes were recorded.InterventionsInsulin resistance was treated with lifestyle intervention and metformin, and diabetes with the addition of glitazones, glucagon-like peptide 1 agonists, and/or insulin. Thyroid and T deficiencies were corrected. Dyslipidemia was treated with statins and nicotinic acid derivatives. Cardiomyopathy was treated with standard therapy as required.Main outcome measuresThe associations of age, gender, and risk factors for cardiovascular disease with aortic pulse wave velocity were assessed and correlated with the effects of reduction in left ventricular function. Vascular events were monitored for 5 years.ResultsAortic pulse wave velocity was positively associated with the duration of diabetes (P = .001) and inversely with left ventricular ejection fraction (P = .036). Five of the cohort with cardiovascular events had higher aortic pulse wave velocity (P = .0247), and all had long duration of diabetes.ConclusionsDuration of diabetes predicted aortic pulse wave velocity in Alström syndrome, which in turn predicted cardiovascular events. This offers hope of secondary prevention because type 2 diabetes can be delayed or reversed by lifestyle interventions.
Project description:Although the cross-sectional relationship of arterial stiffness with cerebral small vessel disease is consistently shown in middle-aged and young-old adults, it is less clear whether these associations remain significant over time in very old adults. We hypothesize that arterial stiffness is longitudinally associated with white matter characteristics, and associations are stronger within watershed areas. Neuroimaging was obtained in 2006-2008 from 303 elderly (mean age 82.9 years, 59% women, 41% black) with pulse wave velocity (PWV) measures in 1997-1998. Multivariable regression models estimated the coefficients for PWV (cm/sec) in relationship to presence, severity, and spatial distribution of white matter hyperintensities (WMH), gray matter volume, and fractional anisotropy from diffusion tensor, adjusting for demographic, cardiovascular risk factors, and diseases from 1997-1998 to 2006-2008. Higher PWV in 1997-1998 was associated with greater WMH volume in 2006-2008 within the left superior longitudinal fasciculus (age and total brain WMH adjusted, P=0.023), but not with WMH in other tracts or with fractional anisotropy or gray matter volume from total brain (P>0.2). Associations were stronger in blacks than in whites, remaining significant in fully adjusted models. Elderly with WMH in tracts related to processing speed and memory are more likely to have had higher PWV values 10 years prior, before neuroimaging data being available. Future studies should address whether arterial stiffness can serve as an early biomarker of covert brain structural abnormalities and whether early arterial stiffness control can promote successful brain aging, especially in black elderly.
Project description:AimsWe aim to examine the association of estimated pulse wave velocity (ePWV) with all-cause and cardiovascular mortality in patients with diabetes.MethodsAll of adult participants with diabetes from the National Health and Nutrition Examination Survey (NHANES) (1999-2018) were enrolled. ePWV was calculated according to the previously published equation based on age and mean blood pressure. The mortality information was obtained from the National Death Index database. Weighted Kaplan-Meier (KM) plot and weighted multivariable Cox regression was used to investigate the association of ePWV with all-cause and cardiovascular mortality risks. Restricted cubic spline was adopted to visualize the relationship between ePWV and mortality risks.Results8,916 participants with diabetes were included in this study and the median follow-up duration was ten years. The mean age of study population was 59.0 ± 11.6 years, 51.3% of the participants were male, representing 27.4 million patients with diabetes in weighted analysis. The increment of ePWV was closely associated with increased risks of all-cause mortality (HR: 1.46, 95% CI: 1.42-1.51) and cardiovascular mortality (HR: 1.59, 95% CI: 1.50-1.68). After adjusting for cofounding factors, for every 1 m/s increase in ePWV, there was a 43% increased risk of all-cause mortality (HR: 1.43, 95% CI: 1.38-1.47) and 58% increased of cardiovascular mortality (HR: 1.58, 95% CI: 1.50-1.68). ePWV had positive linear associations with all-cause and cardiovascular mortality. KM plots also showed that the risks of all-cause and cardiovascular mortality were significantly elevated in patients with higher ePWV.ConclusionsePWV had a close association with all-cause and cardiovascular mortality risks in patients with diabetes.
Project description:Although brachial-ankle pulse wave velocity (baPWV) has been widely used as an index of arterial stiffness, no consensus exists about whether baPWV can reflect central aortic stiffness. The authors investigated the association between baPWV and invasively measured aortic pulse pressure (APP) in a total of 109 consecutive patients (mean age, 62.3 ± 11.3 years; 67.9% men). Most patients (91%) had obstructive coronary artery disease, and mean baPWV and APP values were 1535 ± 303 cm/s and 66.8 ± 22.5 mm Hg, respectively. In univariate analysis, there was a significant linear correlation between baPWV and APP (r = .635, P < .001). The correlation between baPWV and APP remained significant even after controlling for potential confounders (β = 0.574, P < .001; R2 = .469). Arterial stiffness measured by baPWV showed a strong positive correlation with invasively measured APP, independent of clinical confounders. Therefore, baPWV can be a good marker of central aortic stiffness.
Project description:Accurate risk stratification in COVID-19 patients consists a major clinical need to guide therapeutic strategies. We sought to evaluate the prognostic role of estimated pulse wave velocity (ePWV), a marker of arterial stiffness which reflects overall arterial integrity and aging, in risk stratification of hospitalized patients with COVID-19. This retrospective, longitudinal cohort study, analyzed a total population of 1671 subjects consisting of 737 hospitalized COVID-19 patients consecutively recruited from two tertiary centers (Newcastle cohort: n = 471 and Pisa cohort: n = 266) and a non-COVID control cohort (n = 934). Arterial stiffness was calculated using validated formulae for ePWV. ePWV progressively increased across the control group, COVID-19 survivors and deceased patients (adjusted mean increase per group 1.89 m/s, P < 0.001). Using a machine learning approach, ePWV provided incremental prognostic value and improved reclassification for mortality over the core model including age, sex and comorbidities [AUC (core model + ePWV vs. core model) = 0.864 vs. 0.755]. ePWV provided similar prognostic value when pulse pressure or hs-Troponin were added to the core model or over its components including age and mean blood pressure (p < 0.05 for all). The optimal prognostic ePWV value was 13.0 m/s. ePWV conferred additive discrimination (AUC: 0.817 versus 0.779, P < 0.001) and reclassification value (NRI = 0.381, P < 0.001) over the 4C Mortality score, a validated score for predicting mortality in COVID-19 and the Charlson comorbidity index. We suggest that calculation of ePWV, a readily applicable estimation of arterial stiffness, may serve as an additional clinical tool to refine risk stratification of hospitalized patients with COVID-19 beyond established risk factors and scores.
Project description:BackgroundEstimated pulse wave velocity (ePWV) has revealed excellent performance in predicting cardiovascular disease (CVD) risk. However, whether ePWV predicts all-cause mortality and CVD mortality in populations with obesity remains elusive.MethodsWe performed a prospective cohort including 49,116 participants from the National Health and Nutrition Examination Survey from 2005 to 2014. Arterial stiffness was evaluated by ePWV. Weighted univariate, multivariate Cox regression and receiver operating characteristic curve (ROC) analysis was used to assess the effects of ePWV on the risk of all-cause and CVD mortality. In addition, the two-piecewise linear regression analysis was used to describe the trend of ePWV affecting mortality and identify the thresholds that significantly affect mortality.ResultsA total of 9929 participants with obesity with ePWV data and 833 deaths were enrolled. Based on the multivariate Cox regression results, the high ePWV group had a 1.25-fold higher risk of all-cause mortality and a 5.76-fold higher risk of CVD mortality than the low-ePWV group. All-cause and CVD mortality risk increased by 123% and 44%, respectively, for every 1 m/s increase in ePWV. ROC results showed that ePWV had an excellent accuracy in predicting all-cause mortality (AUC = 0.801) and CVD mortality (AUC = 0.806). Furthermore, the two-piecewise linear regression analysis exhibited that the minimal threshold at which ePWV affected participant mortality was 6.7 m/s for all-cause mortality and 7.2 m/s for CVD mortality.ConclusionsePWV was an independent risk factor for mortality in populations with obesity. High ePWV levels were associated with an increased all-cause and CVD mortality. Thus, ePWV can be considered a novel biomarker to assess mortality risk in patients with obesity.
Project description:BackgroundThis study aims to investigate the association between an elevated bilateral pulse wave velocity difference (BPWVD) and cardiovascular diseases (CVDs) and all-cause mortality.MethodsThis study included a total of 38,356 participants. A multivariable Cox proportional hazards regression was used to assess the association between high BPWVD and the increased risk of CVDs and all-cause mortality by calculating hazard ratios (HRs) with 95% confidence intervals.ResultsA total of 1,213 cases of CVDs were identified over a mean duration of 6.19 years, including 886 cases of cerebral infarction (CI), 105 cases of intracerebral hemorrhage (ICH), and 222 cases of myocardial infarction (MI), along with 1,182 cases of all-cause mortality. The median BPWVD was 42 cm/s (19-80 cm/s). After adjusting for all confounders and baseline brachial-ankle PWV (baPWV), our analysis revealed a significant correlation between a higher risk of CVDs, MI, and all-cause mortality with an increase in BPWVD per standard deviation. HRs (95% confidence interval) were found to be 1.06 (1.01-1.11), 1.11 (1.02-1.21), and 1.07 (1.04-1.10), respectively. Among the participants with higher baPWV on the left side, the HRs (95% confidence interval) were 1.08 (1.02-1.14) for CVDs, 1.27 (1.10-1.46) for incident ICH, 1.16 (1.00-1.24) for incident MI, and 1.10 (1.07-1.15) for all-cause mortality, for per standard deviation increase in BPWVD.ConclusionsOur findings reveal a significant correlation between elevated BPWVD and the risks of developing CVDs and all-cause mortality. This highlights the importance of thoroughly evaluating BPWVD as a means of detecting individuals at risk for CVDs and mortality.