Unknown

Dataset Information

0

ABL1-dependent OTULIN phosphorylation promotes genotoxic Wnt/β-catenin activation to enhance drug resistance in breast cancers.


ABSTRACT: Dysregulated Wnt/β-catenin activation plays a critical role in cancer progression, metastasis, and drug resistance. Genotoxic agents such as radiation and chemotherapeutics have been shown to activate the Wnt/β-catenin signaling although the underlying mechanism remains incompletely understood. Here, we show that genotoxic agent-activated Wnt/β-catenin signaling is independent of the FZD/LRP heterodimeric receptors and Wnt ligands. OTULIN, a linear linkage-specific deubiquitinase, is essential for the DNA damage-induced β-catenin activation. OTULIN inhibits linear ubiquitination of β-catenin, which attenuates its Lys48-linked ubiquitination and proteasomal degradation upon DNA damage. The association with β-catenin is enhanced by OTULIN Tyr56 phosphorylation, which depends on genotoxic stress-activated ABL1/c-Abl. Inhibiting OTULIN or Wnt/β-catenin sensitizes triple-negative breast cancer xenograft tumors to chemotherapeutics and reduces metastasis. Increased OTULIN levels are associated with aggressive molecular subtypes and poor survival in breast cancer patients. Thus, OTULIN-mediated Wnt/β-catenin activation upon genotoxic treatments promotes drug resistance and metastasis in breast cancers.

SUBMITTER: Wang W 

PROVIDER: S-EPMC7414915 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8403677 | biostudies-literature
| S-EPMC2663839 | biostudies-other
| S-EPMC2736766 | biostudies-literature
| S-EPMC5320608 | biostudies-other
| S-EPMC7147719 | biostudies-literature
| S-EPMC5739699 | biostudies-literature
| S-EPMC2631972 | biostudies-literature
| S-EPMC4306684 | biostudies-literature
| S-EPMC4264928 | biostudies-literature