Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:To analyse gene expression pattern in different disease state of COVID-19 patients. Experimental workflow: 1) rRNA was removed by using RNase H method, 2) QAIseq FastSelect RNA Removal Kit was used to remove the Globin RNA, 3) The purified fragmented cDNA was combined with End Repair Mix, then add A-Tailing Mix, mix well by pipetting, incubation, 4) PCR amplification, 5) Library quality control and pooling cyclization, 6) The RNA library was sequenced by MGI2000 PE100 platform with 100bp paired-end reads. Analysis steps: 1) RNA-seq raw sequencing reads were filtered by SOAPnuke (Li et al., 2008) to remove reads with sequencing adapter, with low-quality base ratio (base quality < 5) > 20%, and with unknown base (’N’ base) ratio > 5%. 2) Reads aligned to rRNA by Bowtie2 (v2.2.5) (Langmead and Salzberg, 2012) were removed. 3) The clean reads were mapped to the reference genome using HISAT2 (Kim et al., 2015). Bowtie2 (v2.2.5) was applied to align the clean reads to the transcriptome. 4)Then the gene expression level (FPKM) was determined by RSEM (Li and Dewey, 2011). Genes with FPKM > 0.1 in at least one sample were retained.
Project description:To analyse gene expression pattern in different disease state of COVID-19 patients. Experimental workflow: 1) Small RNA enrichment and purification, 2) Adaptor ligation and Unique molecular identifiers (UMI) labeled Primer addition, 3) RT-PCR, Library quantitation and pooling cyclization, 4) Library quality control, 5) Small RNAs were sequenced by BGI500 platform with 50bp single-end reads resulting in at least 20M reads for each sample. Analysis steps: 1) Small RNA raw sequencing reads with low quality tags (which have more than four bases whose quality is less than ten, or have more than six bases with a quality less than thirteen.), the reads with poly A tags, and the tags without 3’ primer or tags shorter than 18nt were removed. 2) After data filtering, the clean reads were mapped to the reference genome and other sRNA database including miRbase, siRNA, piRNA and snoRNA using Bowtie2 (Langmead and Salzberg, 2012). Particularly, cmsearch (Nawrocki and Eddy, 2013) was performed for Rfam mapping. 3) The small RNA expression level was calculated by counting absolute numbers of molecules using unique molecular identifiers (UMI, 8-10nt). MiRNA with UMI count lager than 1 in at least one sample were considered as expressed.
Project description:Using COVID-19 as model, we set out to identify serological, cellular and transcriptomic imprints of pathological responses linked to autoreactive B cells at single-cell resolution
Project description:COVID-19 management guidelines have largely attributed critically ill patients who develop acute respiratory distress syndrome, to a systemic overproduction of pro-inflammatory cytokines. Cardiovascular dysfunction may also represent a primary phenomenon, with increasing data suggesting that severe COVID-19 reflects a confluence of vascular dysfunction, thrombosis and dysregulated inflammation. Here, we first consolidate the information on localized microvascular inflammation and disordered cytokine release, triggering vessel permeability and prothrombotic conditions that play a central role in perpetuating the pathogenic COVID-19 cascade. Secondly, we seek to clarify the gateways which SARS-CoV-2, the causative COVID-19 virus, uses to enter host vascular cells. Post-mortem examinations of patients' tissues have confirmed direct viral endothelial infection within several organs. While there have been advances in single-cell RNA sequencing, endothelial cells across various vascular beds express low or undetectable levels of those touted SARS-CoV-2 entry factors. Emerging studies postulate alternative pathways and the apicobasal distribution of host cell surface factors could influence endothelial SARS-CoV-2 entry and replication. Finally, we provide experimental considerations such as endothelial polarity, cellular heterogeneity in organoids and shear stress dynamics in designing cellular models to facilitate research on viral-induced endothelial dysfunctions. Understanding the vascular underpinning of COVID-19 pathogenesis is crucial to managing outcomes and mortality.