Project description:Background and objectivesSevere aortic stenosis (AS) with left ventricular systolic dysfunction (LVSD) is a class I indication for aortic valve replacement (AVR) but this recommendation is not well established in those at the stage of moderate AS. We investigate the clinical impact of AVR among patients with moderate AS and LVSD.MethodsFrom 2001 to 2017, we consecutively identified patients with moderate AS and LVSD, defined as aortic valve area 1.0-1.5 cm² and left ventricular ejection fraction <50%. The primary outcome was all-cause death. The outcomes were compared between those who underwent early surgical AVR (within 2 years of index echocardiography) at the stage of moderate AS versus those who were followed medically without AVR at the outpatient clinic.ResultsAmong 255 patients (70.1±11.3 years, male 62%), 37 patients received early AVR. The early AVR group was younger than the medical observation group (63.1±7.9 vs. 71.3±11.4) with a lower prevalence of hypertension and chronic kidney disease. During a median 1.8-year follow up, 121 patients (47.5%) died, and the early AVR group showed a significantly lower all-cause death rate than the medical observation group (5.03PY vs. 18.80PY, p<0.001). After multivariable Cox-proportional hazard regression adjusting for age, sex, comorbidities, and laboratory data, early AVR at the stage of moderate AS significantly reduced the risk of death (hazard ratio, 0.43; 95% confidence interval 0.20-0.91; p=0.028).ConclusionsIn patients with moderate AS and LVSD, AVR reduces the risk of all-cause death. A prospective randomized trial is warranted to confirm our findings.
Project description:The role of cardiac computed tomography in the evaluation of patients for transcatheter aortic valve implantation is well-established. However, its role in the evaluation of anomalous vessels in the pre-procedure planning, intra-procedural fusion imaging and post-procedure assessment of vessel patency is not yet defined. This case report illustrates the utility of cardiac CT throughout the management of complex structural interventions. Here, we describe an anomalous left coronary artery where the course of the anomalous vessel and its proximity to the aortic valve annulus is defined allowing the selection of the most appropriate balloon expandable valve with a planned deployment. Upon follow up, patency of this anomalous vessel is ascertained using CT as well as the transcatheter valve function and leaflet thickening.
Project description:Degenerative calcific aortic stenosis (AS) is the most common valvular heart disease and often co-exists with left ventricular (LV) systolic dysfunction at the time of diagnosis. Impaired LV systolic function has been associated with worse outcomes in the setting of AS, even after successful aortic valve replacement (AVR). Myocyte apoptosis and myocardial fibrosis are the 2 key mechanisms responsible for the transition from the initial adaptation phase of LV hypertrophy to the phase of heart failure with reduced ejection fraction. Novel advanced imaging methods, based on echocardiography and cardiac magnetic resonance imaging, can detect LV dysfunction and remodeling at an early and reversible stage, with important implications for the optimal timing of AVR especially in patients with asymptomatic severe AS. Furthermore, the advent of transcatheter AVR as a first-line treatment for AS with excellent procedural outcomes, and evidence that even moderate AS portends worse prognosis in heart failure with reduced ejection fraction patients, has raised the question of early valve intervention in this patient population. With this review, we describe the pathophysiology and outcomes of LV systolic dysfunction in the setting of AS, present imaging predictors of LV recovery after AVR, and discuss future directions in the treatment of AS extending beyond the traditional indications defined in the current guidelines.
Project description:BackgroundThe immediate effect of aortic valve replacement (AVR) for aortic stenosis on perioperative myocardial function is unclear. Left ventricular (LV) function may be impaired by cardioplegia-induced myocardial arrest and ischemia-reperfusion injury, especially in patients with LV hypertrophy. Alternatively, LV function may improve when afterload is reduced after AVR. The right ventricle (RV), however, experiences cardioplegic arrest without benefiting from improved loading conditions. Which of these effects on myocardial function dominate in patients undergoing AVR for aortic stenosis has not been thoroughly explored. Our primary objective is thus to characterize the effect of intraoperative events on LV function during AVR using echocardiographic measures of myocardial deformation. Second, we evaluated RV function.MethodsIn this supplementary analysis of 100 patients enrolled in a clinical trial (NCT01187329), 97 patients underwent AVR for aortic stenosis. Of these patients, 95 had a standardized intraoperative transesophageal echocardiographic examination of systolic and diastolic function performed before surgical incision and repeated after chest closure. Echocardiographic images were analyzed off-line for global longitudinal myocardial strain and strain rate using 2D speckle-tracking echocardiography. Myocardial deformation assessed at the beginning of surgery was compared with the end of surgery using paired t tests corrected for multiple comparisons.ResultsLV volumes and arterial blood pressure decreased, and heart rate increased at the end of surgery. Echocardiographic images were acceptable for analysis in 72 patients for LV strain, 67 for LV strain rate, and 54 for RV strain and strain rate. In 72 patients with LV strain images, 9 patients required epinephrine, 22 required norepinephrine, and 2 required both at the end of surgery. LV strain did not change at the end of surgery compared with the beginning of surgery (difference: 0.7 [97.6% confidence interval, -0.2 to 1.5]%; P = 0.07), whereas LV systolic strain rate improved (became more negative) (-0.3 [-0.4 to -0.2] s; P < 0.001). In contrast, RV systolic strain worsened (became less negative) at the end of surgery (difference: 4.6 [3.1 to 6.0]%; P < 0.001) although RV systolic strain rate was unchanged (0.0 [97.6% confidence interval, -0.1 to 0.1]; P = 0.83).ConclusionsLV function improved after replacement of a stenotic aortic valve demonstrated by improved longitudinal strain rate. In contrast, RV function, assessed by longitudinal strain, was reduced.
Project description:Although a small percentage of patients with critical aortic stenosis do not develop left ventricle hypertrophy, increased ventricular mass is widely observed in conditions of increased afterload. There is growing epidemiological evidence that hypertrophy is associated with excess cardiac mortality and morbidity not only in patients with arterial hypertension, but also in those undergoing aortic valve replacement. Valve replacement surgery relieves the aortic obstruction and prolongs the life of many patients, but favorable or adverse left ventricular remodeling is affected by a large number of factors whose specific roles are still a subject of debate. Age, gender, hemodynamic factors, prosthetic valve types, myocyte alterations, interstitial structures, blood pressure control and ethnicity can all influence the process of left ventricle mass regression, and myocardial metabolism and coronary artery circulation are also involved in the changes occurring after aortic valve replacement. The aim of this overview is to analyze these factors in the light of our experience, elucidate the important question of prosthesis-patient mismatch by considering the method of effective orifice area, and discuss surgical timings and techniques that can improve the management of patients with aortic valve stenosis and maximize the probability of mass regression.
Project description:AimsPredictors of progression of moderate aortic valve stenosis (AS) are incompletely understood. The objective of this study was to evaluate the prognostic value of left ventricular hypertrophy (LVH), diastolic dysfunction, and right ventricular (RV) load in moderate AS.Methods and resultsModerate AS was defined by aortic valve area (AVA), peak transvalvular velocity (Vmax) or mean pressure gradient (PGmean). A total of 131 Patients were divided into two groups according to the number of pathophysiological changes (LVH, diastolic dysfunction with increased LV filling pressures and/or RV load): <2 (group 1); ≥2 (group 2). The primary outcome was survival without aortic valve replacement (AVR). After follow-up of 30 months, the reduction of AVA (-0.06 ± 0.16 vs. -0.24 ± 0.19 cm2, P < 0.001), the increase of PGmean (2.89 ± 6.35 vs 6.29 ± 7.13 mmHg, P < 0.001) and the decrease of the global longitudinal strain (0.8 ± 2.56 vs. 1.57 ± 3.42%, P < 0.001) from baseline to follow-up were significantly more pronounced in group 2. Survival without AVR was 82% (group 1) and 56% (group 2) [HR 3.94 (1.74-8.94), P < 0.001]. Survival without AVR or progression of AS was 77% (group 1) and 46% (group 2) [HR 3.80 (1.84-7.86), P < 0.001]. The presence of ≥2 pathophysiological changes predicted outcome whereas age, comorbidities, LDL-cholesterol did not.ConclusionThe presence of ≥2 pathophysiological changes is a strong predictor of outcome in moderate AS and may be useful for risk stratification, particularly for scheduling follow-up time intervals and deciding the timing of AVR.
Project description:BackgroundPatients with severe aortic stenosis and left ventricular systolic dysfunction have a poor prognosis, and this may result in inferior survival also after aortic valve replacement. The outcomes of transcatheter and surgical aortic valve replacement were investigated in this comparative analysis.MethodsThe retrospective nationwide FinnValve registry included data on patients who underwent transcatheter or surgical aortic valve replacement with a bioprosthesis for severe aortic stenosis. Propensity score matching was performed to adjust the outcomes for baseline covariates of patients with reduced (≤ 50%) left ventricular ejection fraction.ResultsWithin the unselected, consecutive 6463 patients included in the registry, the prevalence of reduced ejection fraction was 20.8% (876 patients) in the surgical cohort and 27.7% (452 patients) in the transcatheter cohort. Reduced left ventricular ejection fraction was associated with decreased survival (adjusted hazards ratio 1.215, 95%CI 1.067-1.385) after a mean follow-up of 3.6 years. Among 255 propensity score matched pairs, 30-day mortality was 3.1% after transcatheter and 7.8% after surgical intervention (p = 0.038). One-year and 4-year survival were 87.5% and 65.9% after transcatheter intervention and 83.9% and 69.6% after surgical intervention (restricted mean survival time ratio, 1.002, 95%CI 0.929-1.080, p = 0.964), respectively.ConclusionsReduced left ventricular ejection fraction was associated with increased morbidity and mortality after surgical and transcatheter aortic valve replacement. Thirty-day mortality was higher after surgery, but intermediate-term survival was comparable to transcatheter intervention. Trial registration The FinnValve registry ClinicalTrials.gov Identifier: NCT03385915.
Project description:BackgroundLeft ventricular diverticulum (LVD) is a rare cardiac malformation in patients with severe aortic stenosis (AS). Transcatheter aortic valve replacement (TAVR) is not recommended due to the risk of diverticulum injury. However, for patients considered inoperable or at high surgical risk, TAVR might be the only treatment option. The safety and feasibility of TAVR for severe AS with concomitant LVD are still unclear.Case summaryAn 80-year-old Asian woman complaining of shortness of breath was admitted to our hospital, whose echocardiogram showed calcified severe AS and a diverticulum in the left ventricular apex. A transfemoral 26 mm Venus-A prosthetic aortic valve was successfully implanted. Pre- and post-procedural cardiac magnetic resonance imaging revealed a remarkable volume reduction of LVD.DiscussionTransfemoral TAVR was not preferred because the straight-tip hydrophilic wire and catheter tip could injure the fragile diverticulum wall. If we could avoid the injury of the diverticulum, TAVR would be a good option for patients at high surgical risk.
Project description:Reverse left ventricular (LV) remodeling after aortic valve replacement (AVR), in patients with aortic stenosis, is well-documented as an important prognostic factor. With this systematic review and meta-analysis, we aimed to characterize the response of the unloaded LV after AVR. We searched on MEDLINE/PubMed and Web of Science for studies reporting echocardiographic findings before and at least 1 month after AVR for the treatment of aortic stenosis. In total, 1,836 studies were identified and 1,098 were screened for inclusion. The main factors of interest were structural and dynamic measures of the LV and aortic valve. We performed a random-effects meta-analysis to compute standardized mean differences (SMD) between follow-up and baseline values for each outcome. Twenty-seven studies met the eligibility criteria, yielding 11,751 patients. AVR resulted in reduced mean aortic gradient (SMD: -38.23 mmHg, 95% CI: -39.88 to -36.58 , I2=92% ), LV mass (SMD: -37.24 g, 95% CI: -49.31 to -25.18 , I2=96% ), end-diastolic LV diameter (SMD: -1.78 mm, 95% CI: -2.80 to -0.76 , I2=96% ), end-diastolic LV volume (SMD: -1.6 ml, 95% CI: -6.68 to 3.51, I2=91% ), increased effective aortic valve area (SMD: 1.10 cm2, 95% CI: 1.01 to 1.20, I2=98% ), and LV ejection fraction (SMD: 2.35%, 95% CI: 1.31 to 3.40%, I2=94.1% ). Our results characterize the extent to which reverse remodeling is expected to occur after AVR. Notably, in our study, reverse remodeling was documented as soon as 1 month after AVR.