Project description:The causative organism, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical manifestations in disease-ridden patients. Differences in the severity of COVID-19 ranges from asymptomatic infections and mild cases to the severe form, leading to acute respiratory distress syndrome (ARDS) and multiorgan failure with poor survival. MiRNAs can regulate various cellular processes, including proliferation, apoptosis, and differentiation, by binding to the 3′UTR of target mRNAs inducing their degradation, thus serving a fundamental role in post-transcriptional repression. Alterations of miRNA levels in the blood have been described in multiple inflammatory and infectious diseases, including SARS-related coronaviruses. We used microarrays to delineate the miRNAs and snoRNAs signature in the peripheral blood of severe COVID-19 cases (n=9), as compared to mild (n=10) and asymptomatic (n=10) patients, and identified differentially expressed transcripts in severe versus asymptomatic, and others in severe versus mild COVID-19 cases. A cohort of 29 male age-matched patients were selected. All patients were previously diagnosed with COVID-19 using TaqPath COVID-19 Combo Kit (Thermo Fisher Scientific, Waltham, Massachusetts), or Cobas SARS-CoV-2 Test (Roche Diagnostics, Rotkreuz, Switzerland), with a CT value < 30. Additional criterion for selection was age between 35 and 75 years. Participants were grouped into severe, mild and asymptomatic. Classifying severe cases was based on requirement of high-flow oxygen support and ICU admission (n=9). Whereas mild patients were identified based on symptoms and positive radiographic findings with pulmonary involvement (n=10). Patients with no clinical presentation were labelled as asymptomatic cases (n=10).
Project description:Coronavirus disease 2019 (COVID-19) is a viral infection with the novel severe acute respiratory distress syndrome corona virus 2 (SARS-CoV-2). Until now, more than 670 million people have suffered from COVID-19 worldwide, and roughly 7 million death cases were attributed to COVID-19. Recent evidence suggests an interplay between COVID-19 and cardiovascular disease (CVD). COVID-19 may serve as a yet underappreciated CVD risk modifier, including risk factors such as diabetes mellitus or arterial hypertension. In addition, recent data suggest that previous COVID-19 may increase the risk for many entities of CVD to an extent similarly observed for traditional cardiovascular (CV) risk factors. Furthermore, increased CVD incidence and worse clinical outcomes in individuals with preexisting CVD have been observed for myocarditis, acute coronary syndrome, heart failure (HF), thromboembolic complications, and arrhythmias. Direct and indirect mechanisms have been proposed by which COVID-19 may impact CVD and CV risk, including viral entry into CV tissue or by the induction of a massive systemic inflammatory response. In the current review, we provide an overview of the literature reporting an interaction between COVID-19 and CVD, review potential mechanisms underlying this interaction, and discuss preventive and treatment strategies and their interference with CVD that were evaluated since the onset of the COVID-19 pandemic.
Project description:To understand and analyse the global impact of COVID-19 on outpatient services, inpatient care, elective surgery, and perioperative colorectal cancer care, a DElayed COloRectal cancer surgery (DECOR-19) survey was conducted in collaboration with numerous international colorectal societies with the objective of obtaining several learning points from the impact of the COVID-19 outbreak on our colorectal cancer patients which will assist us in the ongoing management of our colorectal cancer patients and to provide us safe oncological pathways for future outbreaks.
Project description:Patients with cardiovascular risk factors or established cardiovascular disease have an increased risk of developing coronavirus disease 19 and have a worse outcome when infected, but translating this notion into effective action is challenging. At present it is unclear whether cardiovascular therapies may reduce the likelihood of infection, or improve the survival of infected patients. Given the crucial importance of this issue for clinical cardiologists and all specialists dealing with coronavirus disease 19, we tried to recapitulate the current evidence and provide some practical recommendations.
Project description:The coronavirus disease-2019 (COVID-19) has become a global pandemic. It has spread to more than 100 countries, and more than 1 million cases have been confirmed. Although coronavirus causes severe respiratory infections in humans, accumulating data have demonstrated cardiac complications and poor outcome in patients with COVID-19. A large percent of patients have underlying cardiovascular disease, and they are at a high risk of developing cardiac complications. The basics of the virus, the clinical manifestations, and the possible mechanisms of cardiac complications in patients with COVID-19 are reviewed. Before an effective vaccine or medicine is available, supportive therapy and identifying patients who are at high risk of cardiac complications are important.
Project description:The novel 2019 coronavirus disease (COVID-19), resulting from severe acute respiratory syndrome coronarvirus-2 (SARS-CoV-2) infection, typically leads to respiratory failure in severe cases; however, cardiovascular injury is reported to contribute to a substantial proportion of COVID-19 deaths. Preexisting cardiovascular disease (CVD) is among the most common risk factors for hospitalization and death in COVID-19 patients, and the pathogenic mechanisms of COVID-19 disease progression itself may promote the development of cardiovascular injury, increasing risk of in-hospital death. Sex differences in COVID-19 are becoming more apparent as mounting data indicate that males seem to be disproportionately at risk of severe COVID-19 outcome due to preexisting CVD and COVID-19-related cardiovascular injury. In this review, we will provide a basic science perspective on current clinical observations in this rapidly evolving field and discuss the interplay sex differences, preexisting CVD and COVID-19-related cardiac injury.
Project description:To analyse gene expression pattern in different disease state of COVID-19 patients. Experimental workflow: 1) rRNA was removed by using RNase H method, 2) QAIseq FastSelect RNA Removal Kit was used to remove the Globin RNA, 3) The purified fragmented cDNA was combined with End Repair Mix, then add A-Tailing Mix, mix well by pipetting, incubation, 4) PCR amplification, 5) Library quality control and pooling cyclization, 6) The RNA library was sequenced by MGI2000 PE100 platform with 100bp paired-end reads. Analysis steps: 1) RNA-seq raw sequencing reads were filtered by SOAPnuke (Li et al., 2008) to remove reads with sequencing adapter, with low-quality base ratio (base quality < 5) > 20%, and with unknown base (’N’ base) ratio > 5%. 2) Reads aligned to rRNA by Bowtie2 (v2.2.5) (Langmead and Salzberg, 2012) were removed. 3) The clean reads were mapped to the reference genome using HISAT2 (Kim et al., 2015). Bowtie2 (v2.2.5) was applied to align the clean reads to the transcriptome. 4)Then the gene expression level (FPKM) was determined by RSEM (Li and Dewey, 2011). Genes with FPKM > 0.1 in at least one sample were retained.
Project description:To analyse gene expression pattern in different disease state of COVID-19 patients. Experimental workflow: 1) Small RNA enrichment and purification, 2) Adaptor ligation and Unique molecular identifiers (UMI) labeled Primer addition, 3) RT-PCR, Library quantitation and pooling cyclization, 4) Library quality control, 5) Small RNAs were sequenced by BGI500 platform with 50bp single-end reads resulting in at least 20M reads for each sample. Analysis steps: 1) Small RNA raw sequencing reads with low quality tags (which have more than four bases whose quality is less than ten, or have more than six bases with a quality less than thirteen.), the reads with poly A tags, and the tags without 3’ primer or tags shorter than 18nt were removed. 2) After data filtering, the clean reads were mapped to the reference genome and other sRNA database including miRbase, siRNA, piRNA and snoRNA using Bowtie2 (Langmead and Salzberg, 2012). Particularly, cmsearch (Nawrocki and Eddy, 2013) was performed for Rfam mapping. 3) The small RNA expression level was calculated by counting absolute numbers of molecules using unique molecular identifiers (UMI, 8-10nt). MiRNA with UMI count lager than 1 in at least one sample were considered as expressed.
Project description:A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.