Unknown

Dataset Information

0

Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases.


ABSTRACT: The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1? (IRE1?) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell death. Neuronal cells are particularly sensitive to protein misfolding, consequently ER and UPR dysfunctions were found to be involved in many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prions diseases, among others characterized by the accumulation and aggregation of misfolded proteins. Pharmacological UPR modulation in affected tissues may contribute to the treatment and prevention of neurodegeneration. The association between ER stress, UPR and neuropathology is well established. In this review, we provide up-to-date evidence of UPR activation in neurodegenerative disorders followed by therapeutic strategies targeting the UPR and ameliorating the toxic effects of protein unfolding and aggregation.

SUBMITTER: Ghemrawi R 

PROVIDER: S-EPMC7503386 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Endoplasmic Reticulum Stress and Unfolded Protein Response in Neurodegenerative Diseases.

Ghemrawi Rose R   Khair Mostafa M  

International journal of molecular sciences 20200825 17


The endoplasmic reticulum (ER) is an important organelle involved in protein quality control and cellular homeostasis. The accumulation of unfolded proteins leads to an ER stress, followed by an adaptive response via the activation of the unfolded protein response (UPR), PKR-like ER kinase (PERK), inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) and activating transcription factor 6 (ATF6) pathways. However, prolonged cell stress activates apoptosis signaling leading to cell d  ...[more]

Similar Datasets

| S-EPMC3578356 | biostudies-literature
2011-02-17 | E-GEOD-27349 | biostudies-arrayexpress
2011-02-17 | GSE27349 | GEO
| S-EPMC2821749 | biostudies-literature
2021-03-04 | GSE153755 | GEO
| S-EPMC3508129 | biostudies-literature
| S-EPMC5741216 | biostudies-literature
| S-EPMC5036997 | biostudies-literature
| S-EPMC6758450 | biostudies-literature