Unknown

Dataset Information

0

Creation of Golden Gate constructs for gene doctoring


ABSTRACT: Background Gene doctoring is an efficient recombination-based genetic engineering approach to mutagenesis of the bacterial chromosome that combines the ?-Red recombination system with a suicide donor plasmid that is cleaved in vivo to generate linear DNA fragments suitable for recombination. The use of a suicide donor plasmid makes Gene Doctoring more efficient than other recombineering technologies. However, generation of donor plasmids typically requires multiple cloning and screening steps. Results We constructed a simplified acceptor plasmid, called pDOC-GG, for the assembly of multiple DNA fragments precisely and simultaneously to form a donor plasmid using Golden Gate assembly. Successful constructs can easily be identified through blue-white screening. We demonstrated proof of principle by inserting a gene for green fluorescent protein into the chromosome of Escherichia coli. We also provided related genetic parts to assist in the construction of mutagenesis cassettes with a tetracycline-selectable marker. Conclusions Our plasmid greatly simplifies the construction of Gene Doctoring donor plasmids and allows for the assembly of complex, multi-part insertion or deletion cassettes with a free choice of target sites and selection markers. The tools we developed are applicable to gene editing for a wide variety of purposes in Enterobacteriaceae and potentially in other diverse bacterial families.

SUBMITTER: Thomson N 

PROVIDER: S-EPMC7542709 | biostudies-literature | 2020 Jan

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9303394 | biostudies-literature
| S-EPMC8032637 | biostudies-literature
| S-EPMC6626145 | biostudies-literature
| S-EPMC3098256 | biostudies-literature
| S-EPMC8752160 | biostudies-literature
| S-EPMC6801146 | biostudies-literature