Unknown

Dataset Information

0

Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota.


ABSTRACT: As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D3 (CD3 and HCD3) or a high-choline diet with vitamin D3 supplementation and antibiotics (HCD3A). The results indicate that the HC group exhibited higher plasma trimethylamine (TMA) and TMAO levels, lower richness of gut microbiota, and significantly increased Firmicutes and decreased Bacteroidetes as compared with group C. Vitamin D supplementation significantly reduced plasma TMA and TMAO levels in mice fed a high-choline diet. Furthermore, gut microbiota composition was regulated, and the Firmicutes/Bacteroidetes ratio was reduced by vitamin D. Spearman correlation analysis indicated that Bacteroides and Akkermansia were negatively correlated with plasma TMAO in the HC and HCD3 groups. Our study provides a novel avenue for the prevention and treatment of CVD with vitamin D.

SUBMITTER: Wang X 

PROVIDER: S-EPMC7558778 | biostudies-literature | 2020

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vitamin D Decreases Plasma Trimethylamine-N-oxide Level in Mice by Regulating Gut Microbiota.

Wang Xin X   Li Xueqi X   Dong Yumei Y  

BioMed research international 20201005


As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D<sub>3</sub> (CD3 and HCD3) or a high-choli  ...[more]

Similar Datasets

| S-EPMC5909246 | biostudies-literature
| S-EPMC8408632 | biostudies-literature
| S-EPMC6303862 | biostudies-other
2022-06-07 | GSE190203 | GEO
| S-EPMC7468900 | biostudies-literature