In vivo quantification of regional circumferential Green strain in the thoracic and abdominal aorta by 2D spiral cine DENSE MRI.
Ontology highlight
ABSTRACT: Regional tissue mechanics play a fundamental role in patient-specific cardiovascular function. Nevertheless, regional assessments of aortic kinematics remain lacking due to the challenge of imaging the thin aortic wall. Herein, we present a novel application of DENSE (Displacement Encoding with Stimulated Echoes) MRI to quantify the circumferential Green strain of the thoracic and abdominal aorta. 2D spiral cine DENSE and steady-state free procession (SSFP) cine images were acquired at 3T at the infrarenal aorta (IAA), descending thoracic aorta (DTA), or distal aortic arch (DAA) in a pilot study of 6 healthy volunteers. DENSE data was processed with multiple custom noise-reduction techniques to calculate circumferential Green strain across 16 equispaced sectors around the aorta. Each volunteer was scanned twice to evaluate interstudy repeatability. Circumferential strain was heterogeneously distributed in all volunteers and locations. Spatial heterogeneity index by location was 0.37 (IAA), 0.28 (DTA), and 0.59 (DAA). Mean peak strain by DENSE for each cross-section was consistent with the homogenized linearized strain estimated from SSFP cine. The mean difference in peak strain across all sectors following repeat imaging was -0.1±2.2%, with a mean absolute difference of 1.7%. Aortic cine DENSE MRI is a viable non-invasive technique for quantifying heterogeneous regional aortic wall strain and has significant potential to improve patient-specific clinical assessments of numerous aortopathies, as well as to provide the lacking spatiotemporal data required to refine computational models of aortic growth and remodeling.
SUBMITTER: Wilson JS
PROVIDER: S-EPMC7580660 | biostudies-literature | 2018 Jul
REPOSITORIES: biostudies-literature
ACCESS DATA