Unknown

Dataset Information

0

Controlling the Release of Hydrogen Peroxide from Catechol-Based Adhesive Using Silica Nanoparticle.


ABSTRACT: Catechol-based bioadhesives generate hydrogen peroxide (H2O2) as a byproduct during the curing process. H2O2 can have both beneficial and deleterious effects on biological systems depending on its concentration. To control the amount of H2O2 released from catechol-containing polyethylene glycol-based adhesive (PEG-DA), adhesive was formulated with silica nanoparticles (SiNP) prepared with increased porosity and acid treatment to increase Si-OH surface content. These SiNP demonstrated increased surface area, which promoted interaction with catechol and resulted in increased cure rate, bulk mechanical properties and adhesive properties of PEG-DA. Most importantly, SiNP demonstrated a 50% reduction in the released H2O2 while improving the cell viability and proliferation of three primary cell types, including rat dermal fibroblasts, human epidermal keratinocytes, and human tenocytes. Additionally, SiNP degraded into soluble Si, which also contributed to increased cell proliferation. Incorporation of porous and acid-treated SiNP can be a useful approach to simultaneously modulate the concentration of H2O2 while increasing the adhesive performance of catechol-based adhesives.

SUBMITTER: Pinnaratip R 

PROVIDER: S-EPMC7580861 | biostudies-literature | 2020 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Controlling the Release of Hydrogen Peroxide from Catechol-Based Adhesive Using Silica Nanoparticle.

Pinnaratip Rattapol R   Kord Forooshani Pegah P   Li Meijia M   Hang Hu Yun Y   Rajachar Rupak M RM   Lee Bruce P BP  

ACS biomaterials science & engineering 20200628 8


Catechol-based bioadhesives generate hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a byproduct during the curing process. H<sub>2</sub>O<sub>2</sub> can have both beneficial and deleterious effects on biological systems depending on its concentration. To control the amount of H<sub>2</sub>O<sub>2</sub> released from catechol-containing polyethylene glycol-based adhesive (PEG-DA), adhesive was formulated with silica nanoparticles (SiNP) prepared with increased porosity and acid treatment to i  ...[more]

Similar Datasets

| S-EPMC5431009 | biostudies-literature
| S-EPMC4380612 | biostudies-literature
| S-EPMC7068691 | biostudies-literature
| S-EPMC5453378 | biostudies-other
| S-EPMC6677825 | biostudies-literature
| S-EPMC10119708 | biostudies-literature
2023-08-09 | GSE240442 | GEO
| S-EPMC9794787 | biostudies-literature
| S-EPMC3430705 | biostudies-literature
| S-EPMC5792888 | biostudies-literature