Ontology highlight
ABSTRACT:
SUBMITTER: Massi MC
PROVIDER: S-EPMC7593843 | biostudies-literature | 2020
REPOSITORIES: biostudies-literature

Massi Michela Carlotta MC Gasperoni Francesca F Ieva Francesca F Paganoni Anna Maria AM Zunino Paolo P Manzoni Andrea A Franco Nicola Rares NR Veldeman Liv L Ost Piet P Fonteyne Valérie V Talbot Christopher J CJ Rattay Tim T Webb Adam A Symonds Paul R PR Johnson Kerstie K Lambrecht Maarten M Haustermans Karin K De Meerleer Gert G de Ruysscher Dirk D Vanneste Ben B Van Limbergen Evert E Choudhury Ananya A Elliott Rebecca M RM Sperk Elena E Herskind Carsten C Veldwijk Marlon R MR Avuzzi Barbara B Giandini Tommaso T Valdagni Riccardo R Cicchetti Alessandro A Azria David D Jacquet Marie-Pierre Farcy MF Rosenstein Barry S BS Stock Richard G RG Collado Kayla K Vega Ana A Aguado-Barrera Miguel Elías ME Calvo Patricia P Dunning Alison M AM Fachal Laura L Kerns Sarah L SL Payne Debbie D Chang-Claude Jenny J Seibold Petra P West Catharine M L CML Rancati Tiziana T
Frontiers in oncology 20201015
<b>Background:</b> REQUITE (validating pREdictive models and biomarkers of radiotherapy toxicity to reduce side effects and improve QUalITy of lifE in cancer survivors) is an international prospective cohort study. The purpose of this project was to analyse a cohort of patients recruited into REQUITE using a deep learning algorithm to identify patient-specific features associated with the development of toxicity, and test the approach by attempting to validate previously published genetic risk f ...[more]