Unknown

Dataset Information

0

The inositol pyrophosphate 5-InsP7 drives sodium-potassium pump degradation by relieving an autoinhibitory domain of PI3K p85α.


ABSTRACT: Sodium/potassium-transporting adenosine triphosphatase (Na+/K+-ATPase) is one of the most abundant cell membrane proteins and is essential for eukaryotes. Endogenous negative regulators have long been postulated to play an important role in regulating the activity and stability of Na+/K+-ATPase, but characterization of these regulators has been elusive. Mechanisms of regulating Na+/K+-ATPase homeostatic turnover are unknown. Here, we report that 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7), generated by inositol hexakisphosphate kinase 1 (IP6K1), promotes physiological endocytosis and downstream degradation of Na+/K+-ATPase-α1. Deletion of IP6K1 elicits a twofold enrichment of Na+/K+-ATPase-α1 in plasma membranes of multiple tissues and cell types. Using a suite of synthetic chemical biology tools, we found that 5-InsP7 binds the RhoGAP domain of phosphatidylinositol 3-kinase (PI3K) p85α to disinhibit its interaction with Na+/K+-ATPase-α1. This recruits adaptor protein 2 (AP2) and triggers the clathrin-mediated endocytosis of Na+/K+-ATPase-α1. Our study identifies 5-InsP7 as an endogenous negative regulator of Na+/K+-ATPase-α1.

SUBMITTER: Chin AC 

PROVIDER: S-EPMC7608788 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC6531830 | biostudies-literature
| S-EPMC2728964 | biostudies-literature
2019-11-12 | PXD011269 | Pride
| S-EPMC6383672 | biostudies-literature
| S-EPMC6364804 | biostudies-literature
| S-EPMC9270386 | biostudies-literature
2022-02-22 | GSE126927 | GEO
| S-EPMC7144392 | biostudies-literature