Unknown

Dataset Information

0

Loss of conserved mitochondrial CLPP and its functions lead to different phenotypes in plants and other organisms.


ABSTRACT: Caseinolytic protease (CLPP) is an energy-dependent serine-type protease that plays a role in protein quality control. The CLPP gene is highly conserved across kingdoms and the protein is present in both bacteria and eukaryote organelles like mitochondria across a wide phylogenetic range. This pedigree has all the hallmarks of CLPP being an essential gene. However, in plants, disruption of mitochondrial CLPP has no impact on its growth, reminiscent of its nonessential role in some model fungi. Deletion of mitochondrial CLPP improves health and increased life span in the filamentous fungus, Podospora anserina, while loss of human mitochondrial CLPP leads to infertility and hearing loss. Recently it was revealed that both plant and human CLPP share a similar role in maintenance of the N-module of respiratory complex I. In addition, plant mitochondrial CLPP also coordinates the homeostasis of other mitochondrial protein complexes encoded by genes across mitochondrial and nuclear genomes. Understanding the contextual role of mitochondrial CLPP across kingdoms may help to understand these diverse sets of clpp phenotypes and the widespread conservation of CLPP genes.

SUBMITTER: Huang S 

PROVIDER: S-EPMC7671067 | biostudies-literature | 2020 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Loss of conserved mitochondrial CLPP and its functions lead to different phenotypes in plants and other organisms.

Huang Shaobai S   Petereit Jakob J   Millar A Harvey AH  

Plant signaling & behavior 20201019 12


Caseinolytic protease (CLPP) is an energy-dependent serine-type protease that plays a role in protein quality control. The <i>CLPP</i> gene is highly conserved across kingdoms and the protein is present in both bacteria and eukaryote organelles like mitochondria across a wide phylogenetic range. This pedigree has all the hallmarks of CLPP being an essential gene. However, in plants, disruption of mitochondrial CLPP has no impact on its growth, reminiscent of its nonessential role in some model f  ...[more]

Similar Datasets

| S-EPMC10556007 | biostudies-literature
| S-EPMC8998518 | biostudies-literature
| S-EPMC4931557 | biostudies-literature
| S-EPMC4764191 | biostudies-literature
| S-EPMC10764239 | biostudies-literature
| S-EPMC5836096 | biostudies-literature
| S-EPMC8026707 | biostudies-literature
2023-09-27 | GSE220600 | GEO
| S-EPMC3298863 | biostudies-literature
| S-EPMC11878201 | biostudies-literature