Project description:Neurogenesis persists in the subgranular zone of the hippocampal formation in the adult mammalian brain. In this area, neural progenitor cells (NPCs) receive both permissive and instructive signals, including neurotransmitters, that allow them to generate adult-born neurons which can be functionally integrated in the preexisting circuit. Deregulation of adult hippocampal neurogenesis (ahNG) occurs in several neuropsychiatric and neurodegenerative diseases, including major depression, and represents a potential therapeutic target. Of interest, several studies suggested that, both in rodents and in humans, ahNG is increased by chronic administration of classical monoaminergic antidepressant drugs, suggesting that modulation of this process may participate to their therapeutic effects. Since the established observation that noradrenergic innervations from locus coeruleus make contact with NPC in the dentate gyrus, we investigated the role of beta adrenergic receptor (?-AR) on ahNG both in vitro and in vivo. Here we report that, in vitro, activation of ?2-AR by norepinephrine and ?2-AR agonists promotes the formation of NPC-derived mature neurons, without affecting NPC survival or differentiation toward glial lineages. Additionally, we show that a selective ?2-AR agonist able to cross the blood-brain barrier, salmeterol, positively modulates hippocampal neuroplasticity when chronically administered in adult naïve mice. Indeed, salmeterol significantly increased number, maturation, and dendritic complexity of DCX+ neuroblasts. The increased number of DCX+ cells was not accompanied by a parallel increase in the percentage of BrdU+/DCX+ cells suggesting a potential prosurvival effect of the drug on neuroblasts. More importantly, compared to vehicle, salmeterol promoted ahNG, as demonstrated by an increase in the actual number of BrdU+/NeuN+ cells and in the percentage of BrdU+/NeuN+ cells over the total number of newly generated cells. Interestingly, salmeterol proneurogenic effects were restricted to the ventral hippocampus, an area related to emotional behavior and mood regulation. Since salmeterol is commonly used for asthma therapy in the clinical setting, its novel pharmacological property deserves to be further exploited with a particular focus on drug potential to counteract stress-induced deregulation of ahNG and depressive-like behavior.
Project description:Statins improve recovery from traumatic brain injury and show promise in preventing Alzheimer disease. However, the mechanisms by which statins may be therapeutic for neurological conditions are not fully understood. In this study, we present the initial evidence that oral administration of simvastatin in mice enhances Wnt signaling in vivo. Concomitantly, simvastatin enhances neurogenesis in cultured adult neural progenitor cells as well as in the dentate gyrus of adult mice. Finally, we find that statins enhance Wnt signaling through regulation of isoprenoid synthesis and not through cholesterol. These findings provide direct evidence that Wnt signaling is enhanced in vivo by simvastatin and that this elevation of Wnt signaling is required for the neurogenic effects of simvastatin. Collectively, these data add to the growing body of evidence that statins may have therapeutic value for treating certain neurological disorders.
Project description:Neurogenesis, the formation of new neurons in the adult brain, is important for memory formation and extinction. One of the most studied external interventions that affect the rate of adult neurogenesis is physical exercise. Physical exercise promotes adult neurogenesis via several factors including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF). Here, we identified L-lactate, a physical exercise-induced metabolite, as a factor that promotes adult hippocampal neurogenesis. While prolonged exposure to L-lactate promoted neurogenesis, no beneficial effect was exerted on cognitive learning and memory. Systemic pharmacological blocking of monocarboxylate transporter 2 (MCT2), which transports L-lactate to the brain, prevented lactate-induced neurogenesis, while 3,5-dihydroxybenzoic acid (3,5-DHBA), an agonist for the lactate-receptor hydroxycarboxylic acid receptor 1 (HCAR1), did not affect adult neurogenesis. These data suggest that L-lactate partially mediates the effect of physical exercise on adult neurogenesis, but not cognition, in a MCT2-dependent manner.
Project description:Background and purposeThe cannabinoid system exerts functional regulation of neural stem cell (NSC) proliferation and adult neurogenesis, yet not all effects of cannabinoid-like compounds seen can be attributed to the cannabinoid 1 (CB1 ) or CB2 receptor. The recently de-orphaned GPR55 has been shown to be activated by numerous cannabinoid ligands suggesting that GPR55 is a third cannabinoid receptor. Here, we examined the role of GPR55 activation in NSC proliferation and early adult neurogenesis.Experimental approachThe effects of GPR55 agonists (LPI, O-1602, ML184) on human (h) NSC proliferation in vitro were assessed by flow cytometry. Human NSC differentiation was determined by flow cytometry, qPCR and immunohistochemistry. Immature neuron formation in the hippocampus of C57BL/6 and GPR55-/- mice was evaluated by immunohistochemistry.Key resultsActivation of GPR55 significantly increased proliferation rates of hNSCs in vitro. These effects were attenuated by ML193, a selective GPR55 antagonist. ML184 significantly promoted neuronal differentiation in vitro while ML193 reduced differentiation rates as compared to vehicle treatment. Continuous administration of O-1602 into the hippocampus via a cannula connected to an osmotic pump resulted in increased Ki67+ cells within the dentate gyrus. O-1602 increased immature neuron generation, as assessed by DCX+ and BrdU+ cells, as compared to vehicle-treated animals. GPR55-/- animals displayed reduced rates of proliferation and neurogenesis within the hippocampus while O-1602 had no effect as compared to vehicle controls.Conclusions and implicationsTogether, these findings suggest GPR55 activation as a novel target and strategy to regulate NSC proliferation and adult neurogenesis.
Project description:Adult hippocampal neurogenesis is a critical form of cellular plasticity that is greatly influenced by neural activity. Among the neurotransmitters that are widely implicated in regulating this process are serotonin and norepinephrine, levels of which are modulated by stress, depression and clinical antidepressants. However, studies to date have failed to address a direct role for either neurotransmitter in regulating hippocampal precursor activity. Here we show that norepinephrine but not serotonin directly activates self-renewing and multipotent neural precursors, including stem cells, from the hippocampus of adult mice. Mechanistically, we provide evidence that beta(3)-adrenergic receptors, which are preferentially expressed on a Hes5-expressing precursor population in the subgranular zone (SGZ), mediate this norepinephrine-dependent activation. Moreover, intrahippocampal injection of a selective beta(3)-adrenergic receptor agonist in vivo increases the number of proliferating cells in the SGZ. Similarly, systemic injection of the beta-adrenergic receptor agonist isoproterenol not only results in enhancement of proliferation in the SGZ but also leads to an increase in the percentage of nestin/glial fibrillary acidic protein double-positive neural precursors in vivo. Finally, using a novel ex vivo "slice-sphere" assay that maintains an intact neurogenic niche, we demonstrate that antidepressants that selectively block the reuptake of norepinephrine, but not serotonin, robustly increase hippocampal precursor activity via beta-adrenergic receptors. These findings suggest that the activation of neurogenic precursors and stem cells via beta(3)-adrenergic receptors could be a potent mechanism to increase neuronal production, providing a putative target for the development of novel antidepressants.
Project description:Dopamine D1 receptors (D1Rs) in the hippocampal dentate gyrus (DG) are essential for antidepressant effects. However, the midbrain dopaminergic neurons, the major source of dopamine in the brain, only sparsely project to DG, suggesting possible activation of DG D1Rs by endogenous substances other than dopamine. We have examined this possibility using electrophysiological and biochemical techniques and found robust activation of D1Rs in mouse DG neurons by noradrenaline. Noradrenaline at the micromolar range potentiated synaptic transmission at the DG output and increased the phosphorylation of protein kinase A substrates in DG via activation of D1Rs and β adrenergic receptors. Neuronal excitation preferentially enhanced noradrenaline-induced synaptic potentiation mediated by D1Rs with minor effects on β-receptor-dependent potentiation. Increased voluntary exercise by wheel running also enhanced noradrenaline-induced, D1R-mediated synaptic potentiation, suggesting a distinct functional role of the noradrenaline-D1R signaling. We then examined the role of this signaling in antidepressant effects using mice exposed to chronic restraint stress. In the stressed mice, an antidepressant acting on the noradrenergic system induced a mature-to-immature change in the DG neuron phenotype, a previously proposed cellular substrate for antidepressant action. This effect was evident only in mice subjected to wheel running and blocked by a D1R antagonist. These results suggest a critical role of noradrenaline-induced activation of D1Rs in antidepressant effects in DG. Experience-dependent regulation of noradrenaline-D1R signaling may determine responsiveness to antidepressant drugs in depressive disorders.
Project description:Meningococcus utilizes β-arrestin selective activation of endothelial cell β2 adrenergic receptor (β2AR) to cause meningitis in humans. Molecular mechanisms of receptor activation by the pathogen and of its species selectivity remained elusive. We report that β2AR activation requires two asparagine-branched glycan chains with terminally exposed N-acetyl-neuraminic acid (sialic acid, Neu5Ac) residues located at a specific distance in its N-terminus, while being independent of surrounding amino-acid residues. Meningococcus triggers receptor signaling by exerting direct and hemodynamic-promoted traction forces on β2AR glycans. Similar activation is recapitulated with beads coated with Neu5Ac-binding lectins, submitted to mechanical stimulation. This previously unknown glycan-dependent mode of allosteric mechanical activation of a G protein-coupled receptor contributes to meningococcal species selectivity, since Neu5Ac is only abundant in humans due to the loss of CMAH, the enzyme converting Neu5Ac into N-glycolyl-neuraminic acid in other mammals. It represents an additional mechanism of evolutionary adaptation of a pathogen to its host.
Project description:Norepinephrine regulates latent neural stem cell activity and adult hippocampal neurogenesis, and has an important role in modulating hippocampal functions such as learning, memory and mood. Adult hippocampal neurogenesis is a multi-stage process, spanning from the activation and proliferation of hippocampal stem cells, to their differentiation into neurons. However, the stage-specific effects of noradrenergic receptors in regulating adult hippocampal neurogenesis remain poorly understood. In this study, we used transgenic Nestin-GFP mice and neurosphere assays to show that modulation of α2- and β-adrenergic receptor activity directly affects Nestin-GFP/GFAP-positive precursor cell population albeit in an opposing fashion. While selective stimulation of α2-adrenergic receptors decreases precursor cell activation, proliferation and immature neuron number, stimulation of β-adrenergic receptors activates the quiescent precursor pool and enhances their proliferation in the adult hippocampus. Furthermore, our data indicate no major role for α1-adrenergic receptors, as we did not observe any change in either the activation and proliferation of hippocampal precursors following selective stimulation or blockade of α1-adrenergic receptors. Taken together, our data suggest that under physiological as well as under conditions that lead to enhanced norepinephrine release, the balance between α2- and β-adrenergic receptor activity regulates precursor cell activity and hippocampal neurogenesis.
Project description:Hippocampal circuitry is continuously modified by integration of adult-born dentate granule cells (DGCs). Prior work has shown that enhancing adult hippocampal neurogenesis decreases interference or overlap or conflict between ensembles of similar contexts and promotes discrimination of a shock-associated context from a similar, neutral context. However, the impact of enhanced integration of adult-born neurons on hippocampal network activity or downstream circuits such as the dorsolateral septum that mediate defensive behavioral responses is poorly understood. Here, we first replicated our finding that genetic expansion of the population of adult-born dentate granule cells (8 weeks and younger) promotes contextual fear discrimination. We found that enhanced contextual fear discrimination is associated with greater c-Fos expression in discrete hippocampal subfields along the proximo-distal and dorsoventral axis. Examination of the dorsolateral septum revealed an increase in activation of somatostatin expressing neurons consistent with recent characterization of these cells as calibrators of defensive behavior. Together, these findings begin to shed light on how genetically enhancing adult hippocampal neurogenesis affects activity of hippocampal-dorsolateral septal circuits.
Project description:Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal's ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons.