Project description:An open question in the history of human migration is the identity of the earliest Eurasian populations that have left contemporary descendants. The Arabian Peninsula was the initial site of the out-of-Africa migrations that occurred between 125,000 and 60,000 yr ago, leading to the hypothesis that the first Eurasian populations were established on the Peninsula and that contemporary indigenous Arabs are direct descendants of these ancient peoples. To assess this hypothesis, we sequenced the entire genomes of 104 unrelated natives of the Arabian Peninsula at high coverage, including 56 of indigenous Arab ancestry. The indigenous Arab genomes defined a cluster distinct from other ancestral groups, and these genomes showed clear hallmarks of an ancient out-of-Africa bottleneck. Similar to other Middle Eastern populations, the indigenous Arabs had higher levels of Neanderthal admixture compared to Africans but had lower levels than Europeans and Asians. These levels of Neanderthal admixture are consistent with an early divergence of Arab ancestors after the out-of-Africa bottleneck but before the major Neanderthal admixture events in Europe and other regions of Eurasia. When compared to worldwide populations sampled in the 1000 Genomes Project, although the indigenous Arabs had a signal of admixture with Europeans, they clustered in a basal, outgroup position to all 1000 Genomes non-Africans when considering pairwise similarity across the entire genome. These results place indigenous Arabs as the most distant relatives of all other contemporary non-Africans and identify these people as direct descendants of the first Eurasian populations established by the out-of-Africa migrations.
Project description:BackgroundCompared to non-indigenous populations, indigenous populations experience disproportionately greater morbidity, and a reduced life expectancy; however, conflicting data exist regarding whether a higher risk of fracture is experienced by either population. We systematically evaluate evidence for whether differences in fracture rates at any skeletal site exist between indigenous and non-indigenous populations of any age, and to identify potential risk factors that might explain these differences.MethodsOn 31 August 2016 we conducted a comprehensive computer-aided search of peer-reviewed literature without date limits. We searched PubMed, OVID, MEDLINE, CINAHL, EMBASE, and reference lists of relevant publications. The protocol for this systematic review is registered in PROSPERO, the International Prospective Register of systematic reviews (CRD42016043215). Using the World Health Organization reference population as standard, hip fracture incidence rates were re-standardized for comparability between countries.ResultsOur search yielded 3227 articles; 283 potentially eligible articles were cross-referenced against predetermined criteria, leaving 27 articles for final inclusion. Differences in hip fracture rates appeared as continent-specific, with lower rates observed for indigenous persons in all countries except for Canada and Australia where the opposite was observed. Indigenous persons consistently had higher rates of trauma-related fractures; the highest were observed in Australia where craniofacial fracture rates were 22-times greater for indigenous compared to non-indigenous women. After adjustment for socio-demographic and clinical risk factors, approximately a three-fold greater risk of osteoporotic fracture and five-fold greater risk of craniofacial fractures was observed for indigenous compared to non-indigenous persons; diabetes, substance abuse, comorbidity, lower income, locality, and fracture history were independently associated with an increased risk of fracture.ConclusionsThe observed paucity of data and suggestion of continent-specific differences indicate an urgent need for further research regarding indigenous status and fracture epidemiology and aetiology. Our findings also have implications for communities, governments and healthcare professionals to enhance the prevention of trauma-related fractures in indigenous persons, and an increased focus on modifiable lifestyle behaviours to prevent osteoporotic fractures in all populations.
Project description:Clonal populations accumulate mutations over time, resulting in different haplotypes. Deep sequencing of such a population in principle provides information to reconstruct these haplotypes and the frequency at which the haplotypes occur. However, this reconstruction is technically not trivial, especially not in clonal systems with a relatively low mutation frequency. The low number of segregating sites in those systems adds ambiguity to the haplotype phasing and thus obviates the reconstruction of genome-wide haplotypes based on sequence overlap information.Therefore, we present EVORhA, a haplotype reconstruction method that complements phasing information in the non-empty read overlap with the frequency estimations of inferred local haplotypes. As was shown with simulated data, as soon as read lengths and/or mutation rates become restrictive for state-of-the-art methods, the use of this additional frequency information allows EVORhA to still reliably reconstruct genome-wide haplotypes. On real data, we show the applicability of the method in reconstructing the population composition of evolved bacterial populations and in decomposing mixed bacterial infections from clinical samples.
Project description:We report a study of genome-wide, dense SNP (∼ 900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations. We developed a strategy to detect the signature of selection prior to and following putative admixture events. Several genomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of both San and Eurasian ancestry, which were considered the footprints of selection after population admixture. Several SNPs with strong allele frequency differences were observed predominantly between the admixed indigenous southern African populations, and their ancestral Eurasian populations. Interestingly, many candidate genes, which were identified within the genomic regions showing signals for selection, were associated with southern African-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuberculosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially important role that these genes might have played in adapting to the environment. Additionally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy number variation and genome-wide admixture highlight, and support the unique position of San relative to both African and non-African populations. This study contributes to a better understanding of population ancestry and selection in south-eastern African populations; and the data and results obtained will support research into the genetic contributions to infectious as well as non-communicable diseases in the region.
Project description:Chinese indigenous pigs in the Taihu Lake region are well known for their high fecundity and other excellent characteristics. To better understand the characteristics of these breeds in this area as well as to provide the government and breeders the molecular basis for formulating a reasonable conservation policy, we explored the structure of haplotype blocks and genetic diversity of the 7 populations which is relevant for the management and conservation of these important genetic resources using next-generation sequencing data. In this study, a total of 131 300 single-nucleotide polymorphisms with minor allele frequencies ⩾0.05 were obtained for further analysis. In general, there are similar within-breed genetic diversities (He, Ho, Pn, Ar) among these 7 pig populations in the Taihu Lake region. Average values for the inbreeding coefficients estimates in the 7 populations are 0.110 (F1), 0.056 (F2), and 0.078 (F3). All the breeds have seen a continuous decline in Ne estimates over time with FJ and SW populations having a very similar curve. Moreover, the Ne of SMS pig breeds were smaller than other Chinese pig breeds, indicating that SMS pig breeds underwent stronger selection pressure than other Chinese pig breeds. The average genetic distances among the 7 populations in the Taihu Lake region were 0.235 (MMS), 0.240 (SMS), 0.269 (EH), 0.248 (MI), 0.221 (FJ), 0.254 (JX), and 0.212 (SW). A summary of the number of haplotype blocks and haplotype diversity was also presented. This study provide a deep understanding of the current situation of conservation in this region, thereby uncovering the pertinent insight to better formulate more reasonable preservation policies for the government departments and breeding planners to follow-up.
Project description:A catalog of common, intermediate and well-documented (CIWD) HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQB1 and -DPB1 alleles has been compiled from over 8 million individuals using data from 20 unrelated hematopoietic stem cell volunteer donor registries. Individuals are divided into seven geographic/ancestral/ethnic groups and data are summarized for each group and for the total population. P (two-field) and G group assignments are divided into one of four frequency categories: common (≥1 in 10 000), intermediate (≥1 in 100 000), well-documented (≥5 occurrences) or not-CIWD. Overall 26% of alleles in IPD-IMGT/HLA version 3.31.0 at P group resolution fall into the three CIWD categories. The two-field catalog includes 18% (n = 545) common, 17% (n = 513) intermediate, and 65% (n = 1997) well-documented alleles. Full-field allele frequency data are provided but are limited in value by the variations in resolution used by the registries. A recommended CIWD list is based on the most frequent category in the total or any of the seven geographic/ancestral/ethnic groups. Data are also provided so users can compile a catalog specific to the population groups that they serve. Comparisons are made to three previous CWD reports representing more limited population groups. This catalog, CIWD version 3.0.0, is a step closer to the collection of global HLA frequencies and to a clearer view of HLA diversity in the human population as a whole.
Project description:Neanderthal ancestry remains across modern Eurasian genomes and introgressed sequences influence diverse phenotypes. Here, we demonstrate that introgressed sequences reintroduced thousands of ancestral alleles that were lost in Eurasian populations before introgression. Our simulations and variant effect predictions argue that these reintroduced alleles (RAs) are more likely to be tolerated by modern humans than are introgressed Neanderthal-derived alleles (NDAs) due to their distinct evolutionary histories. Consistent with this, we show enrichment for RAs and depletion for NDAs on introgressed haplotypes with expression quantitative trait loci (eQTL) and phenotype associations. Analysis of available cross-population eQTLs and massively parallel reporter assay data show that RAs commonly influence gene expression independent of linked NDAs. We further validate these independent effects for one RA in vitro. Finally, we demonstrate that NDAs are depleted for regulatory activity compared to RAs, while RAs have activity levels similar to non-introgressed variants. In summary, our study reveals that Neanderthal introgression reintroduced thousands of lost ancestral variants with gene regulatory activity and that these RAs were more tolerated than NDAs. Thus, RAs and their distinct evolutionary histories must be considered when evaluating the effects of introgression.
Project description:Knowledge of human haplotype structure has important implications for strategies of disease-gene mapping and for understanding human evolutionary history. Many attributes of SNPs and haplotypes appear to exhibit highly nonrandom behavior, suggesting past operation of selection or other nonneutral forces. We report the exceptional abundance of a particular haplotype pattern in which two high-frequency haplotypes have different alleles at every SNP site (hence the name "yin yang haplotypes"). Analysis of common haplotypes in 62 random genomic loci and 85 gene coding regions in humans shows that the proportion of the genome spanned by yin yang haplotypes is 75%-85%. Population data of 28 genomic loci in Drosophila melanogaster reveal a similar pattern. The high recurrence (>/=85%) of these haplotype patterns in four distinct human populations suggests that the yin yang haplotypes are likely to predate the African diaspora. The pattern initially appeared to suggest deep population splitting or maintenance of ancient lineages by selection; however, coalescent simulation reveals that the yin yang phenomenon can be explained by strictly neutral evolution in a well-mixed population.
Project description:BACKGROUND: The objective of this study is to investigate the magnitude and nature of health inequalities between indigenous (Scheduled Tribes) and non-indigenous populations, as well as between different indigenous groups, in a rural district of Kerala State, India. METHODS: A health survey was carried out in a rural community (N?=?1660 men and women, 18-96?years). Age- and sex-standardised prevalence of underweight (BMI?<?18.5?kg/m2), anaemia, goitre, suspected tuberculosis and hypertension was compared across forward castes, other backward classes and tribal populations. Multi-level weighted logistic regression models were used to estimate the predicted prevalence of morbidity for each age and social group. A Blinder-Oaxaca decomposition was used to further explore the health gap between tribes and non-tribes, and between subgroups of tribes. RESULTS: Social stratification remains a strong determinant of health in the progressive social policy environment of Kerala. The tribal groups are bearing a higher burden of underweight (46.1 vs. 24.3%), anaemia (9.9 vs. 3.5%) and goitre (8.5 vs. 3.6%) compared to non-tribes, but have similar levels of tuberculosis (21.4 vs. 20.4%) and hypertension (23.5 vs. 20.1%). Significant health inequalities also exist within tribal populations; the Paniya have higher levels of underweight (54.8 vs. 40.7%) and anaemia (17.2 vs. 5.7%) than other Scheduled Tribes. The social gradient in health is evident in each age group, with the exception of hypertension. The predicted prevalence of underweight is 31 and 13 percentage points higher for Paniya and other Scheduled Tribe members, respectively, compared to Forward Caste members 18-30?y (27.1%). Higher hypertension is only evident among Paniya adults 18-30?y (10 percentage points higher than Forward Caste adults of the same age group (5.4%)). The decomposition analysis shows that poverty and other determinants of health only explain 51% and 42% of the health gap between tribes and non-tribes for underweight and goitre, respectively. CONCLUSIONS: Policies and programmes designed to benefit the Scheduled Tribes need to promote their well-being in general but also target the specific needs of the most vulnerable indigenous groups. There is a need to enhance the capacity of the disadvantaged to equally take advantage of health opportunities.