Ontology highlight
ABSTRACT: Background
Achalasia subtypes on high-resolution manometry (HRM) prognosticate treatment response and help direct management plan. We aimed to utilize parameters of distension-induced contractility and pressurization on functional luminal imaging probe (FLIP) panometry and machine learning to predict HRM achalasia subtypes.Methods
One hundred eighty adult patients with treatment-naïve achalasia defined by HRM per Chicago Classification (40 type I, 99 type II, 41 type III achalasia) who underwent FLIP panometry were included: 140 patients were used as the training cohort and 40 patients as the test cohort. FLIP panometry studies performed with 16-cm FLIP assemblies were retrospectively analyzed to assess distensive pressure and distension-induced esophageal contractility. Correlation analysis, single tree, and random forest were adopted to develop classification trees to identify achalasia subtypes.Key results
Intra-balloon pressure at 60 mL fill volume, and proportions of patients with absent contractile response, repetitive retrograde contractile pattern, occluding contractions, sustained occluding contractions (SOC), contraction-associated pressure changes >10 mm Hg all differed between HRM achalasia subtypes and were used to build the decision tree-based classification model. The model identified spastic (type III) vs non-spastic (types I and II) achalasia with 90% and 78% accuracy in the train and test cohorts, respectively. Achalasia subtypes I, II, and III were identified with 71% and 55% accuracy in the train and test cohorts, respectively.Conclusions and inferences
Using a supervised machine learning process, a preliminary model was developed that distinguished type III achalasia from non-spastic achalasia with FLIP panometry. Further refinement of the measurements and more experience (data) may improve its ability for clinically relevant application.
SUBMITTER: Carlson DA
PROVIDER: S-EPMC7775338 | biostudies-literature | 2021 Mar
REPOSITORIES: biostudies-literature
Carlson Dustin A DA Kou Wenjun W Rooney Katharine P KP Baumann Alexandra J AJ Donnan Erica E Triggs Joseph R JR Teitelbaum Ezra N EN Holmstrom Amy A Hungness Eric E Sethi Sajiv S Kahrilas Peter J PJ Pandolfino John E JE
Neurogastroenterology and motility 20200701 3
<h4>Background</h4>Achalasia subtypes on high-resolution manometry (HRM) prognosticate treatment response and help direct management plan. We aimed to utilize parameters of distension-induced contractility and pressurization on functional luminal imaging probe (FLIP) panometry and machine learning to predict HRM achalasia subtypes.<h4>Methods</h4>One hundred eighty adult patients with treatment-naïve achalasia defined by HRM per Chicago Classification (40 type I, 99 type II, 41 type III achalasi ...[more]