Ontology highlight
ABSTRACT: Background
The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified.Results
As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13-1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13-1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones.Conclusions
Sixty-two base pairs (bp) region (-?340 ~ -?279?bp upstream from start codon) and about 450?bp region (-?1489 to -?1017?bp) in BoGH3.13-1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants.
SUBMITTER: Jeong J
PROVIDER: S-EPMC7789250 | biostudies-literature | 2021 Jan
REPOSITORIES: biostudies-literature
Jeong Jiseong J Park Sunhee S Im Jeong Hui JH Yi Hankuil H
BMC genomics 20210106 1
<h4>Background</h4>The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified.<h4>Results</h4>As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes includin ...[more]