Unknown

Dataset Information

0

Federated Learning used for predicting outcomes in SARS-COV-2 patients.


ABSTRACT: 'Federated Learning' (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the "EXAM" (EMR CXR AI Model) model. EXAM achieved an average Area Under the Curve (AUC) of over 0.92, an average improvement of 16%, and a 38% increase in generalisability over local models. The FL paradigm was successfully applied to facilitate a rapid data science collaboration without data exchange, resulting in a model that generalised across heterogeneous, unharmonized datasets. This provided the broader healthcare community with a validated model to respond to COVID-19 challenges, as well as set the stage for broader use of FL in healthcare.

SUBMITTER: Flores M 

PROVIDER: S-EPMC7805458 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Federated Learning used for predicting outcomes in SARS-COV-2 patients.

Flores Mona M   Dayan Ittai I   Roth Holger H   Zhong Aoxiao A   Harouni Ahmed A   Gentili Amilcare A   Abidin Anas A   Liu Andrew A   Costa Anthony A   Wood Bradford B   Tsai Chien-Sung CS   Wang Chih-Hung CH   Hsu Chun-Nan CN   Lee C K CK   Ruan Colleen C   Xu Daguang D   Wu Dufan D   Huang Eddie E   Kitamura Felipe F   Lacey Griffin G   César de Antônio Corradi Gustavo G   Shin Hao-Hsin HH   Obinata Hirofumi H   Ren Hui H   Crane Jason J   Tetreault Jesse J   Guan Jiahui J   Garrett John J   Park Jung Gil JG   Dreyer Keith K   Juluru Krishna K   Kersten Kristopher K   Bezerra Cavalcanti Rockenbach Marcio Aloisio MA   Linguraru Marius M   Haider Masoom M   AbdelMaseeh Meena M   Rieke Nicola N   Damasceno Pablo P   Cruz E Silva Pedro Mario PM   Wang Pochuan P   Xu Sheng S   Kawano Shuichi S   Sriswasdi Sira S   Park Soo Young SY   Grist Thomas T   Buch Varun V   Jantarabenjakul Watsamon W   Wang Weichung W   Tak Won Young WY   Li Xiang X   Lin Xihong X   Kwon Fred F   Gilbert Fiona F   Kaggie Josh J   Li Quanzheng Q   Quraini Abood A   Feng Andrew A   Priest Andrew A   Turkbey Baris B   Glicksberg Benjamin B   Bizzo Bernardo B   Kim Byung Seok BS   Tor-Diez Carlos C   Lee Chia-Cheng CC   Hsu Chia-Jung CJ   Lin Chin C   Lai Chiu-Ling CL   Hess Christopher C   Compas Colin C   Bhatia Deepi D   Oermann Eric E   Leibovitz Evan E   Sasaki Hisashi H   Mori Hitoshi H   Yang Isaac I   Sohn Jae Ho JH   Keshava Murthy Krishna Nand KN   Fu Li-Chen LC   Furtado de Mendonça Matheus Ribeiro MR   Fralick Mike M   Kang Min Kyu MK   Adil Mohammad M   Gangai Natalie N   Vateekul Peerapon P   Elnajjar Pierre P   Hickman Sarah S   Majumdar Sharmila S   McLeod Shelley S   Reed Sheridan S   Graf Stefan S   Harmon Stephanie S   Kodama Tatsuya T   Puthanakit Thanyawee T   Mazzulli Tony T   de Lima Lavor Vitor V   Rakvongthai Yothin Y   Lee Yu Rim YR   Wen Yuhong Y  

Research square 20210108


'Federated Learning' (FL) is a method to train Artificial Intelligence (AI) models with data from multiple sources while maintaining anonymity of the data thus removing many barriers to data sharing. During the SARS-COV-2 pandemic, 20 institutes collaborated on a healthcare FL study to predict future oxygen requirements of infected patients using inputs of vital signs, laboratory data, and chest x-rays, constituting the "EXAM" (EMR CXR AI Model) model. EXAM achieved an average Area Under the Cur  ...[more]

Similar Datasets

| S-EPMC9157510 | biostudies-literature
| S-EPMC10394879 | biostudies-literature
| S-EPMC10261845 | biostudies-literature
| S-EPMC10562351 | biostudies-literature
| S-EPMC10427996 | biostudies-literature
| S-EPMC10813889 | biostudies-literature
| S-EPMC10715801 | biostudies-literature
| S-BSST379 | biostudies-other
| S-SCDT-EMBOJ-2021-107821 | biostudies-other
| S-EPMC8092601 | biostudies-literature