Ontology highlight
ABSTRACT:
SUBMITTER: Dayan I
PROVIDER: S-EPMC9157510 | biostudies-literature | 2021 Oct
REPOSITORIES: biostudies-literature

Dayan Ittai I Roth Holger R HR Zhong Aoxiao A Harouni Ahmed A Gentili Amilcare A Abidin Anas Z AZ Liu Andrew A Costa Anthony Beardsworth AB Wood Bradford J BJ Tsai Chien-Sung CS Wang Chih-Hung CH Hsu Chun-Nan CN Lee C K CK Ruan Peiying P Xu Daguang D Wu Dufan D Huang Eddie E Kitamura Felipe Campos FC Lacey Griffin G de Antônio Corradi Gustavo César GC Nino Gustavo G Shin Hao-Hsin HH Obinata Hirofumi H Ren Hui H Crane Jason C JC Tetreault Jesse J Guan Jiahui J Garrett John W JW Kaggie Joshua D JD Park Jung Gil JG Dreyer Keith K Juluru Krishna K Kersten Kristopher K Rockenbach Marcio Aloisio Bezerra Cavalcanti MABC Linguraru Marius George MG Haider Masoom A MA AbdelMaseeh Meena M Rieke Nicola N Damasceno Pablo F PF E Silva Pedro Mario Cruz PMC Wang Pochuan P Xu Sheng S Kawano Shuichi S Sriswasdi Sira S Park Soo Young SY Grist Thomas M TM Buch Varun V Jantarabenjakul Watsamon W Wang Weichung W Tak Won Young WY Li Xiang X Lin Xihong X Kwon Young Joon YJ Quraini Abood A Feng Andrew A Priest Andrew N AN Turkbey Baris B Glicksberg Benjamin B Bizzo Bernardo B Kim Byung Seok BS Tor-Díez Carlos C Lee Chia-Cheng CC Hsu Chia-Jung CJ Lin Chin C Lai Chiu-Ling CL Hess Christopher P CP Compas Colin C Bhatia Deepeksha D Oermann Eric K EK Leibovitz Evan E Sasaki Hisashi H Mori Hitoshi H Yang Isaac I Sohn Jae Ho JH Murthy Krishna Nand Keshava KNK Fu Li-Chen LC de Mendonça Matheus Ribeiro Furtado MRF Fralick Mike M Kang Min Kyu MK Adil Mohammad M Gangai Natalie N Vateekul Peerapon P Elnajjar Pierre P Hickman Sarah S Majumdar Sharmila S McLeod Shelley L SL Reed Sheridan S Gräf Stefan S Harmon Stephanie S Kodama Tatsuya T Puthanakit Thanyawee T Mazzulli Tony T de Lavor Vitor Lima VL Rakvongthai Yothin Y Lee Yu Rim YR Wen Yuhong Y Gilbert Fiona J FJ Flores Mona G MG Li Quanzheng Q
Nature medicine 20210915 10
Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved a ...[more]