Unknown

Dataset Information

0

Federated learning for predicting clinical outcomes in patients with COVID-19.


ABSTRACT: Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved an average area under the curve (AUC) >0.92 for predicting outcomes at 24 and 72 h from the time of initial presentation to the emergency room, and it provided 16% improvement in average AUC measured across all participating sites and an average increase in generalizability of 38% when compared with models trained at a single site using that site's data. For prediction of mechanical ventilation treatment or death at 24 h at the largest independent test site, EXAM achieved a sensitivity of 0.950 and specificity of 0.882. In this study, FL facilitated rapid data science collaboration without data exchange and generated a model that generalized across heterogeneous, unharmonized datasets for prediction of clinical outcomes in patients with COVID-19, setting the stage for the broader use of FL in healthcare.

SUBMITTER: Dayan I 

PROVIDER: S-EPMC9157510 | biostudies-literature | 2021 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Federated learning for predicting clinical outcomes in patients with COVID-19.

Dayan Ittai I   Roth Holger R HR   Zhong Aoxiao A   Harouni Ahmed A   Gentili Amilcare A   Abidin Anas Z AZ   Liu Andrew A   Costa Anthony Beardsworth AB   Wood Bradford J BJ   Tsai Chien-Sung CS   Wang Chih-Hung CH   Hsu Chun-Nan CN   Lee C K CK   Ruan Peiying P   Xu Daguang D   Wu Dufan D   Huang Eddie E   Kitamura Felipe Campos FC   Lacey Griffin G   de Antônio Corradi Gustavo César GC   Nino Gustavo G   Shin Hao-Hsin HH   Obinata Hirofumi H   Ren Hui H   Crane Jason C JC   Tetreault Jesse J   Guan Jiahui J   Garrett John W JW   Kaggie Joshua D JD   Park Jung Gil JG   Dreyer Keith K   Juluru Krishna K   Kersten Kristopher K   Rockenbach Marcio Aloisio Bezerra Cavalcanti MABC   Linguraru Marius George MG   Haider Masoom A MA   AbdelMaseeh Meena M   Rieke Nicola N   Damasceno Pablo F PF   E Silva Pedro Mario Cruz PMC   Wang Pochuan P   Xu Sheng S   Kawano Shuichi S   Sriswasdi Sira S   Park Soo Young SY   Grist Thomas M TM   Buch Varun V   Jantarabenjakul Watsamon W   Wang Weichung W   Tak Won Young WY   Li Xiang X   Lin Xihong X   Kwon Young Joon YJ   Quraini Abood A   Feng Andrew A   Priest Andrew N AN   Turkbey Baris B   Glicksberg Benjamin B   Bizzo Bernardo B   Kim Byung Seok BS   Tor-Díez Carlos C   Lee Chia-Cheng CC   Hsu Chia-Jung CJ   Lin Chin C   Lai Chiu-Ling CL   Hess Christopher P CP   Compas Colin C   Bhatia Deepeksha D   Oermann Eric K EK   Leibovitz Evan E   Sasaki Hisashi H   Mori Hitoshi H   Yang Isaac I   Sohn Jae Ho JH   Murthy Krishna Nand Keshava KNK   Fu Li-Chen LC   de Mendonça Matheus Ribeiro Furtado MRF   Fralick Mike M   Kang Min Kyu MK   Adil Mohammad M   Gangai Natalie N   Vateekul Peerapon P   Elnajjar Pierre P   Hickman Sarah S   Majumdar Sharmila S   McLeod Shelley L SL   Reed Sheridan S   Gräf Stefan S   Harmon Stephanie S   Kodama Tatsuya T   Puthanakit Thanyawee T   Mazzulli Tony T   de Lavor Vitor Lima VL   Rakvongthai Yothin Y   Lee Yu Rim YR   Wen Yuhong Y   Gilbert Fiona J FJ   Flores Mona G MG   Li Quanzheng Q  

Nature medicine 20210915 10


Federated learning (FL) is a method used for training artificial intelligence models with data from multiple sources while maintaining data anonymity, thus removing many barriers to data sharing. Here we used data from 20 institutes across the globe to train a FL model, called EXAM (electronic medical record (EMR) chest X-ray AI model), that predicts the future oxygen requirements of symptomatic patients with COVID-19 using inputs of vital signs, laboratory data and chest X-rays. EXAM achieved a  ...[more]

Similar Datasets

| S-EPMC7805458 | biostudies-literature
| S-EPMC8186799 | biostudies-literature
2020-12-19 | GSE162835 | GEO
2021-10-01 | GSE178967 | GEO
| S-EPMC8459591 | biostudies-literature
| S-EPMC7430624 | biostudies-literature
| S-EPMC9890886 | biostudies-literature
| S-EPMC7842859 | biostudies-literature
| S-EPMC9328073 | biostudies-literature
2021-06-18 | GSE178404 | GEO