Project description:Liver fibrosis is a potentially reversible pathophysiological event, leading to excess deposition of extracellular matrix (ECM) components and taking place as the net result of liver fibrogenesis, a dynamic and highly integrated process occurring during chronic liver injury of any etiology. Liver fibrogenesis and fibrosis, together with chronic inflammatory response, are primarily involved in the progression of chronic liver diseases (CLD). As is well known, a major role in fibrogenesis and fibrosis is played by activated myofibroblasts (MFs), as well as by macrophages and other hepatic cell populations involved in CLD progression. In the present review, we will focus the attention on the emerging pathogenic role of hypoxia, hypoxia-inducible factors (HIFs) and related mediators in the fibrogenic progression of CLD.
Project description:In polycystic kidney disease (PKD), erythropoietin (EPO) production and interstitial vascularization are increased compared with other kidney diseases. EPO and several angiogenic factors are controlled by hypoxia-inducible transcription factors (HIFs), which are composed of a constitutive beta-subunit and two alternative alpha-subunits (HIF-1alpha, HIF-2alpha). We hypothesized that cyst expansion may result in pericystic hypoxia and consecutive up-regulation of HIF and thus examined the expression of HIF-alpha and HIF target genes in human PKD and in a rodent PKD model. HIF-1alpha and HIF-2alpha were found to be up-regulated in cyst epithelium and cells of cyst walls, respectively. The distinct expression pattern of the HIF-alpha isoforms closely resembles the respective pattern in normal kidneys under systemic hypoxia. Pimonidazole staining, a marker for tissue hypoxia, confirmed the existence of regional hypoxia in polycystic kidneys. Immunohistochemistry for selected target genes implicated a role for HIF-1alpha in vascular endothelial growth factor and Glut-1 activation and HIF-2alpha in endoglin and EPO stimulation. Polycystin-deficient cells showed physiological, oxygen-dependent HIF-alpha modulation, excluding a direct influence of polycystin deficiency on HIF-alpha regulation. In conclusion, HIF accumulation in human and rat PKD seems to be responsible for increased EPO production and pericystic hypervascularity and may have an impact on progression of PKD.
Project description:Hepatocellular carcinoma is one of the most prevalent and lethal cancers with limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia and the activation of hypoxia inducible factors. In this review, we describe the current understanding of hypoxia signaling pathway and summarize the expression, function and target genes of hypoxia inducible factors in hepatocellular carcinoma. We also highlight the recent progress in hypoxia-targeted therapeutic strategies in hepatocellular carcinoma and discuss further the future efforts for the study of hypoxia and/or hypoxia inducible factors in this deadly disease.
Project description:Diabetes is one of the leading causes of chronic kidney disease (CKD), and multiple underlying mechanisms involved in pathogenesis of diabetic nephropathy (DN) have been described. Although various treatments and diagnosis applications are available, DN remains a clinical and economic burden, considering that about 40% of type 2 diabetes patients will develop nephropathy. In the past years, some research found that hypoxia response and hypoxia-inducible factors (HIFs) play critical roles in the pathogenesis of DN. Hypoxia-inducible factors (HIFs) HIF-1, HIF-2, and HIF-3 are the main mediators of metabolic responses to the state of hypoxia, which seems to be the one of the earliest events in the occurrence and progression of diabetic kidney disease (DKD). The abnormal activity of HIFs seems to be of crucial importance in the pathogenesis of diseases, including nephropathies. Studies using transcriptome analysis confirmed by metabolome analysis revealed that HIF stabilizers (HIF-prolyl hydroxylase inhibitors) are novel therapeutic agents used to treat anemia in CKD patients that not only increase endogenous erythropoietin production, but also could act by counteracting the metabolic alterations in incipient diabetic kidney disease and relieve oxidative stress in the renal tissue. In this review, we present the newest data regarding hypoxia response and HIF involvement in the pathogenesis of diabetic nephropathy and new therapeutic insights, starting from improving kidney oxygen homeostasis.
Project description:Hypoxia-inducible factors (HIFs) are the key regulators of oxygen homeostasis in response to hypoxia. In diabetes, multiple tissues are hypoxic but adaptive responses to hypoxia are impaired due to insufficient activation of HIF signalling, which results from inhibition of HIF-1α stability and function due to hyperglycaemia and elevated fatty acid levels. In this review, we will summarise and discuss current findings about the regulation of HIF signalling in diabetes and the pathogenic roles of hypoxia and dysregulated HIF signalling in the development of diabetes and its complications. The therapeutic potential of targeting HIF signalling for the prevention and treatment of diabetes and related complications is also discussed.
Project description:Molecular oxygen (O2) sustains intracellular bioenergetics and is consumed by numerous biochemical reactions, making it essential for most species on Earth. Accordingly, decreased oxygen concentration (hypoxia) is a major stressor that generally subverts life of aerobic species and is a prominent feature of pathological states encountered in bacterial infection, inflammation, wounds, cardiovascular defects and cancer. Therefore, key adaptive mechanisms to cope with hypoxia have evolved in mammals. Systemically, these adaptations include increased ventilation, cardiac output, blood vessel growth and circulating red blood cell numbers. On a cellular level, ATP-consuming reactions are suppressed, and metabolism is altered until oxygen homeostasis is restored. A critical question is how mammalian cells sense oxygen levels to coordinate diverse biological outputs during hypoxia. The best-studied mechanism of response to hypoxia involves hypoxia inducible factors (HIFs), which are stabilized by low oxygen availability and control the expression of a multitude of genes, including those involved in cell survival, angiogenesis, glycolysis and invasion/metastasis. Importantly, changes in oxygen can also be sensed via other stress pathways as well as changes in metabolite levels and the generation of reactive oxygen species by mitochondria. Collectively, this leads to cellular adaptations of protein synthesis, energy metabolism, mitochondrial respiration, lipid and carbon metabolism as well as nutrient acquisition. These mechanisms are integral inputs into fine-tuning the responses to hypoxic stress.
Project description:Many signals involved in pathophysiology are controlled by hypoxia-inducible factors (HIFs), transcription factors that induce expression of hypoxia-responsive genes. HIFs are post-translationally regulated by a family of O2-dependent HIF hydroxylases: four prolyl 4-hydroxylases and an asparaginyl hydroxylase. Most of these enzymes are abundant in resting liver, which is itself unique because of its physiological O2 gradient, and they can exist in both nuclear and cytoplasmic pools. In this study, we analyzed the cellular localization of endogenous HIFs and their regulatory hydroxylases in primary rat hepatocytes cultured under hypoxia-reoxygenation conditions. In hepatocytes, hypoxia targeted HIF-1alpha to the peroxisome, rather than the nucleus, where it co-localized with von Hippel-Lindau tumor suppressor protein and the HIF hydroxylases. Confocal immunofluorescence microscopy demonstrated that the HIF hydroxylases translocated from the nucleus to the cytoplasm in response to hypoxia, with increased accumulation in peroxisomes on reoxygenation. These results were confirmed via immunotransmission electron microscopy and Western blotting. Surprisingly, in resting liver tissue, perivenous localization of the HIF hydroxylases was observed, consistent with areas of low pO2. In conclusion, these studies establish the peroxisome as a highly relevant site of subcellular localization and function for the endogenous HIF pathway in hepatocytes.
Project description:Hypoxia-inducible factors (HIFs) are master regulators of oxygen homeostasis that match O2 supply and demand for each of the 50 trillion cells in the adult human body. Cancer cells co-opt this homeostatic system to drive cancer progression. HIFs activate the transcription of thousands of genes that mediate angiogenesis, cancer stem cell specification, cell motility, epithelial-mesenchymal transition, extracellular matrix remodeling, glucose and lipid metabolism, immune evasion, invasion, and metastasis. In this Review, the mechanisms and consequences of HIF activation in cancer cells are presented. The current status and future prospects of small-molecule HIF inhibitors for use as cancer therapeutics are discussed.
Project description:Hyperglycemia results in increased oxygen consumption and decreased oxygen tension in the kidney. We tested the hypothesis that activation of hypoxia-inducible factors (HIFs) protects against diabetes-induced alterations in oxygen metabolism and kidney function. Experimental groups consisted of control and streptozotocin-induced diabetic rats treated with or without chronic cobalt chloride to activate HIFs. We elucidated the involvement of oxidative stress by studying the effects of acute administration of the superoxide dismutase mimetic tempol. Compared with controls, diabetic rats displayed tissue hypoxia throughout the kidney, glomerular hyperfiltration, increased oxygen consumption, increased total mitochondrial leak respiration, and decreased tubular sodium transport efficiency. Diabetic kidneys showed proteinuria and tubulointerstitial damage. Cobalt chloride activated HIFs, prevented the diabetes-induced alterations in oxygen metabolism, mitochondrial leak respiration, and kidney function, and reduced proteinuria and tubulointerstitial damage. The beneficial effects of tempol were less pronounced after activation of HIFs, indicating improved oxidative stress status. In conclusion, activation of HIFs prevents diabetes-induced alteration in kidney oxygen metabolism by normalizing glomerular filtration, which reduces tubular electrolyte load, preventing mitochondrial leak respiration and improving tubular transport efficiency. These improvements could be related to reduced oxidative stress and account for the reduced proteinuria and tubulointerstitial damage. Thus, pharmacologic activation of the HIF system may prevent development of diabetic nephropathy.
Project description:In the realm of cancer therapeutics, targeting the hypoxia-inducible factor (HIF) pathway has emerged as a promising strategy. This study delves into the intricate web of HIF-associated mechanisms, exploring avenues for future anticancer therapies. Framing the investigation within the broader context of cancer progression and hypoxia response, this article aims to decipher the pivotal role played by HIF in regulating genes influencing angiogenesis, cell proliferation, and glucose metabolism. Employing diverse approaches such as HIF inhibitors, anti-angiogenic therapies, and hypoxia-activated prodrugs, the research methodologically intervenes at different nodes of the HIF pathway. Findings showcase the efficacy of agents like EZN-2968, Minnelide, and Acriflavine in modulating HIF-1α protein synthesis and destabilizing HIF-1, providing preliminary proof of HIF-1α mRNA modulation and antitumor activity. However, challenges, including toxicity, necessitate continued exploration and development, as exemplified by ongoing clinical trials. This article concludes by emphasizing the potential of targeted HIF therapies in disrupting cancer-related signaling pathways.