Unknown

Dataset Information

0

Real-time determination of earthquake focal mechanism via deep learning.


ABSTRACT: An immediate report of the source focal mechanism with full automation after a destructive earthquake is crucial for timely characterizing the faulting geometry, evaluating the stress perturbation, and assessing the aftershock patterns. Advanced technologies such as Artificial Intelligence (AI) has been introduced to solve various problems in real-time seismology, but the real-time source focal mechanism is still a challenge. Here we propose a novel deep learning method namely Focal Mechanism Network (FMNet) to address this problem. The FMNet trained with 787,320 synthetic samples successfully estimates the focal mechanisms of four 2019 Ridgecrest earthquakes with magnitude larger than Mw 5.4. The network learns the global waveform characteristics from theoretical data, thereby allowing the extensive applications of the proposed method to regions of potential seismic hazards with or without historical earthquake data. After receiving data, the network takes less than two hundred milliseconds for predicting the source focal mechanism reliably on a single CPU.

SUBMITTER: Kuang W 

PROVIDER: S-EPMC7933283 | biostudies-literature | 2021 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Real-time determination of earthquake focal mechanism via deep learning.

Kuang Wenhuan W   Yuan Congcong C   Zhang Jie J  

Nature communications 20210304 1


An immediate report of the source focal mechanism with full automation after a destructive earthquake is crucial for timely characterizing the faulting geometry, evaluating the stress perturbation, and assessing the aftershock patterns. Advanced technologies such as Artificial Intelligence (AI) has been introduced to solve various problems in real-time seismology, but the real-time source focal mechanism is still a challenge. Here we propose a novel deep learning method namely Focal Mechanism Ne  ...[more]

Similar Datasets

| S-EPMC10956737 | biostudies-literature
| S-EPMC8122165 | biostudies-literature
| S-EPMC9678292 | biostudies-literature
| S-EPMC5799195 | biostudies-literature
| S-EPMC8145775 | biostudies-literature
| S-EPMC7096409 | biostudies-literature
| S-EPMC10654383 | biostudies-literature
| S-EPMC4268708 | biostudies-other
| S-EPMC8011016 | biostudies-literature
| S-EPMC9293842 | biostudies-literature