Project description:The MUC2 mucin polymer is the main building unit of the intestinal mucus layers separating intestinal microbiota from the host epithelium. The MUC2 mucin is a large glycoprotein with a C-terminal domain similar to the MUC5AC and MUC5B mucins and the von Willebrand factor (VWF). A structural model of the C-terminal part of MUC2, MUC2-C, was generated by combining Cryo-electron microscopy, AlphaFold prediction, information of its glycosylation, and small angle X-ray scattering information. The globular VWD4 assembly in the N-terminal of MUC2-C is followed by 3.5 linear VWC domains that form an extended flexible structure before the C-terminal cystine-knot. All gel-forming mucins and VWF form tail-tail disulfide-bonded dimers in their C-terminal cystine-knot domain, but interestingly the MUC2 mucin has an extra stabilizing disulfide bond on the N-terminal side of the VWD4 domain, likely essential for a stable intestinal mucus barrier.
Project description:The mucin 2 glycoprotein assembles into a complex hydrogel that protects intestinal epithelia and houses the gut microbiome. A major step in mucin 2 assembly is further multimerization of preformed mucin dimers, thought to produce a honeycomb-like arrangement upon hydrogel expansion. Important open questions are how multiple mucin 2 dimers become covalently linked to one another and how mucin 2 multimerization compares with analogous processes in related polymers such as respiratory tract mucins and the hemostasis protein von Willebrand factor. Here we report the x-ray crystal structure of the mucin 2 multimerization module, found to form a dimer linked by two intersubunit disulfide bonds. The dimer structure calls into question the current model for intestinal mucin assembly, which proposes disulfide-mediated trimerization of the same module. Key residues making interactions across the dimer interface are highly conserved in intestinal mucin orthologs, supporting the physiological relevance of the observed quaternary structure. With knowledge of the interface residues, it can be demonstrated that many of these amino acids are also present in other mucins and in von Willebrand factor, further indicating that the stable dimer arrangement reported herein is likely to be shared across this functionally broad protein family. The mucin 2 module structure thus reveals the manner by which both mucins and von Willebrand factor polymerize, drawing deep structural parallels between macromolecular assemblies critical to mucosal epithelia and the vasculature.
Project description:von Willebrand factor (VWF) released from endothelial cells is rich in ultra-large (UL) multimers that are intrinsically active in binding platelets, whereas plasma-type VWF multimers require shear stress to be activated. This functional difference may be attributed to thiols exposed on the surface of plasma-type VWF multimers, but not on ULVWF multimers. Shear stress induces the exposed thiols to form disulfide bonds between laterally apposed plasma-type VWF multimers, leading to enhanced VWF binding to platelets.We tested a hypothesis that ADAMTS-13 has a disulfide bond reducing activity that regulates shear-induced thiol-disulfide exchange of VWF.Thiol blocking agents and active thiol bead capturing were used to identify and locate this activity, along with truncated ADAMTS-13 mutants.ADAMTS-13 contains a disulfide bond reducing activity that primarily targets disulfide bonds in plasma-type VWF multimers induced by high shear stress or formed with thiol beads, but not disulfide bonds in native multimeric structures. Cysteine thiols targeted by this activity are in the VWF C-domain and are known to participate in shear-induced thiol-disulfide exchange. ADAMTS-13 contains cysteine thiols that remain exposed after being subjected to hydrodynamic forces. Blocking these active thiols eliminates this reducing activity and moderately decreases ADAMTS-13 activity in cleaving ULVWF strings anchored to endothelial cells under flow conditions, but not under static conditions. This activity is located in this C-terminal region of ADAMTS-13.This novel disulfide-bond-reducing activity of ADAMTS-13 may prevent covalent lateral association and increased platelet adherence of plasma-type VWF multimers induced by high fluid shear stress.
Project description:Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D'D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D'D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D'D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.
Project description:Progress in both basic and translational research into the molecular mechanisms of VWD can be seen in multiple fields.Genetics of vwdIn the past several decades, knowledge of the underlying pathogenesis of von Willebrand disease (VWD) has increased tremendously, thanks in no small part to detailed genetic mapping of the von Willebrand Factor (VWF) gene and advances in genetic and bioinformatic technology. However, these advances do not always easily translate into improved management for patients with VWD and low-VWF levels.Vwd and pregnancyFor example, the treatment of pregnant women with VWD both pre- and postpartum can be complicated. While knowledge of the VWF genotype at some amino acid positions can aid in knowledge of who may be at increased risk of thrombocytopenia or insufficient increase in VWF levels during pregnancy, in many cases, VWF levels and bleeding severity is highly heterogeneous, making monitoring recommended during pregnancy to optimize treatment strategies. VWF AND COVID-19: New challenges related to the consequences of dysregulation of hemostasis continue to be discovered. The ongoing COVID-19 pandemic has highlighted that VWF has additional biological roles in the regulation of inflammatory disorders and angiogenesis, disruption of which may contribute to COVID-19 induced vasculopathy. Increased endothelial cell activation and Weibel-Palade body exocytosis in severe COVID-19 lead to markedly increased plasma VWF levels. Coupled with impairment of normal ADAMTS13 multimer regulation, these data suggest a role for VWF in the pathogenesis underlying pulmonary microvascular angiopathy in severe COVID-19.ConclusionWith the increased affordability and availability of next-generation sequencing techniques, as well as a push towards a multi-omic approach and personalized medicine in human genetics, there is hope that translational research will improve VWD patient outcomes.
Project description:Force-dependent binding of platelet glycoprotein Ib (GPIb) receptors to plasma von Willebrand factor (VWF) plays a key role in hemostasis and thrombosis. Previous studies have suggested that VWF activation requires force-induced exposure of the GPIb binding site in the A1 domain that is autoinhibited by the neighboring A2 domain. However, the biochemical basis of this "mechanopresentation" remains elusive. From a combination of protein chemical, biophysical, and functional studies, we find that the autoinhibition is controlled by the redox state of an unusual disulfide bond near the carboxyl terminus of the A2 domain that links adjacent cysteine residues to form an eight-membered ring. Only when the bond is cleaved does the A2 domain bind to the A1 domain and block platelet GPIb binding. Molecular dynamics simulations indicate that cleavage of the disulfide bond modifies the structure and molecular stresses of the A2 domain in a long-range allosteric manner, which provides a structural explanation for redox control of the autoinhibition. Significantly, the A2 disulfide bond is cleaved in ~75% of VWF subunits in healthy human donor plasma but in just ~25% of plasma VWF subunits from heart failure patients who have received extracorporeal membrane oxygenation support. This suggests that the majority of plasma VWF binding sites for platelet GPIb are autoinhibited in healthy donors but are mostly available in heart failure patients. These findings demonstrate that a disulfide bond switch regulates mechanopresentation of VWF.
Project description:The large von Willebrand factor (VWF) propeptide (VWFpp) plays a critical role in the multimerization and regulated storage of the mature VWF protein. Although our laboratory and others have identified mutations in von Willebrand disease patients that disrupt VWF multimerization, little is known about the affect of mutations on the regulated storage of VWF.We identified a heterozygous 18 base pair, in-frame deletion in exon 12 of the VWF gene in a patient with an unusual, dimer-intense multimer pattern. This deletion results in loss of amino acids 436-442 of VWFpp, which include one cysteine.Through expression studies, we demonstrate reduced secretion, loss of VWF multimerization, and defective regulated storage of the variant VWF. The loss of VWF storage is secondary to loss of propeptide storage resulting from an apparently defective sorting signal on VWFpp. Suprisingly, coexpressed wild-type VWF or VWFpp functioned in trans to partially restore multimerization of VWF from the variant allele.The deletion of six amino acids in VWFpp results in defects in VWF processing, regulated storage, and function. Although VWFpp may usually function in a homotypic fashion, acting on its own mature VWF subunit, VWFpp may retain the ability to function in trans on VWF expressed from the variant allele.
Project description:Essentials Endothelial colony forming cells (ECFCs) are a powerful tool to study vascular diseases ex vivo. Separate ECFC lines show variations in morphology and von Willebrand factor-related parameters. Maximum cell density is correlated with von Willebrand factor expression in ECFCs. Variations in ECFC lines are dependent on the age and mesenchymal state of the cells. ABSTRACT: Background Endothelial colony forming cells (ECFCs) are cultured endothelial cells derived from peripheral blood. ECFCs are a powerful tool to study pathophysiological mechanisms underlying vascular diseases, including von Willebrand disease. In prior research, however, large variations between ECFC lines were observed in, among others, von Willebrand factor (VWF) expression. Objective Understand the relation between phenotypic characteristics and VWF-related parameters of healthy control ECFCs. Methods ECFC lines (n = 16) derived from six donors were studied at maximum cell density. Secreted and intracellular VWF antigen were measured by ELISA. The angiogenic capacity of ECFCs was investigated by the Matrigel tube formation assay. Differences in expression of genes involved in angiogenesis, aging, and endothelial to mesenchymal transition (EndoMT) were measured by quantitative PCR. Results Different ECFC lines show variable morphologies and cell density at maximum confluency and cell lines with a low maximum cell density show a mixed and more mesenchymal phenotype. We identified a significant positive correlation between maximum cell density and VWF production, both at protein and mRNA level. Also, significant correlations were observed between maximum cell density and several angiogenic, aging and EndoMT parameters. Conclusions We observed variations in morphology, maximum cell density, VWF production, and angiogenic potential between healthy control ECFCs. These variations seem to be attributable to differences in aging and EndoMT. Because variations correlate with cell density, we believe that ECFCs maintain a powerful tool to study vascular diseases. It is however important to compare cell lines with the same characteristics and perform experiments at maximum cell density.
Project description:von Willebrand factor (VWF) is a multimeric plasma protein that mediates platelet adhesion to sites of vascular injury. The hemostatic function of VWF depends upon the formation of disulfide-linked multimers, which requires the VWF propeptide (D1D2 domains) and adjacent D'D3 domains. VWF multimer assembly occurs in the trans-Golgi at pH ~ 6.2 but not at pH 7.4, which suggests that protonation of one or more His residues (pK(a) ~6.0) mediates the pH dependence of multimerization. Alignment of 30 vertebrate VWF sequences identified 13 highly conserved His residues in the D1D2D'D3 domains, and His-to-Ala mutagenesis identified His³⁹⁵ and His⁴⁶⁰ in the D2 domain as critical for VWF multimerization. Replacement of His³⁹⁵ with Lys or Arg prevented multimer assembly, suggesting that reversible protonation of this His residue is essential. In contrast, replacement of His⁴⁶⁰ with Lys or Arg preserved normal multimer assembly, whereas Leu, Met, and Gln did not, indicating that the function of His⁴⁶⁰ depends primarily upon the presence of a positive charge. These results suggest that pH sensing by evolutionarily conserved His residues facilitates the assembly and packaging of VWF multimers upon arrival in the trans-Golgi.
Project description:We characterized a consanguineous Turkish family suffering from von Willebrand disease (VWD) with significant mucocutaneous and joint bleeding. The relative reduction of large plasma von Willebrand factor (VWF) multimers and the absent VWF triplet structure was consistent with type 2A (phenotype IIC) VWD. Surprisingly, platelet VWF was completely deficient of multimers beyond the VWF protomer, suggesting defective alpha-granular storage of larger multimers. Patients were nearly unresponsive to desmopressin acetate, consistent with a lack of regulated VWF release from endothelial cell Weibel-Palade bodies, suggesting defective storage also in endothelial cells. We identified an N528S homozygous mutation in the VWF propeptide D2 domain, predicting the introduction of an additional N-glycosylation site at amino acid 526 in close vicinity to a "CGLC" disulphide isomerase consensus sequence. Expression studies in mammalian cells demonstrated that N528S-VWF was neither normally multimerized nor trafficked to storage granules. However, propeptide containing the N528S mutation trafficked normally to storage granules. Our data indicate that the patients' phenotype is the result of defective multimerization, storage, and secretion. In addition, we have identified a potentially novel pathogenic mechanism of VWD, namely a transportation and storage defect of mature VWF due to defective interaction with its transporter, the mutant propeptide.