Project description:Antibiotic resistance is a worldwide public health problem due to the costs and mortality rates it generates. However, the large pharmaceutical industries have stopped searching for new antibiotics because of their low profitability, given the rapid replacement rates imposed by the increasingly observed resistance acquired by microorganisms. Alternatively, antimicrobial peptides (AMPs) have emerged as potent molecules with a much lower rate of resistance generation. The discovery of these peptides is carried out through extensive in vitro screenings of either rational or non-rational libraries. These processes are tedious and expensive and generate only a few AMP candidates, most of which fail to show the required activity and physicochemical properties for practical applications. This work proposes implementing an artificial intelligence algorithm to reduce the required experimentation and increase the efficiency of high-activity AMP discovery. Our deep learning (DL) model, called AMPs-Net, outperforms the state-of-the-art method by 8.8% in average precision. Furthermore, it is highly accurate to predict the antibacterial and antiviral capacity of a large number of AMPs. Our search led to identifying two unreported antimicrobial motifs and two novel antimicrobial peptides related to them. Moreover, by coupling DL with molecular dynamics (MD) simulations, we were able to find a multifunctional peptide with promising therapeutic effects. Our work validates our previously proposed pipeline for a more efficient rational discovery of novel AMPs.
Project description:Calls for "ethical Artificial Intelligence" are legion, with a recent proliferation of government and industry guidelines attempting to establish ethical rules and boundaries for this new technology. With few exceptions, they interpret Artificial Intelligence (AI) ethics narrowly in a liberal political framework of privacy concerns, transparency, governance and non-discrimination. One of the main hurdles to establishing "ethical AI" remains how to operationalize high-level principles such that they translate to technology design, development and use in the labor process. This is because organizations can end up interpreting ethics in an ad-hoc way with no oversight, treating ethics as simply another technological problem with technological solutions, and regulations have been largely detached from the issues AI presents for workers. There is a distinct lack of supra-national standards for fair, decent, or just AI in contexts where people depend on and work in tandem with it. Topics such as discrimination and bias in job allocation, surveillance and control in the labor process, and quantification of work have received significant attention, yet questions around AI and job quality and working conditions have not. This has left workers exposed to potential risks and harms of AI. In this paper, we provide a critique of relevant academic literature and policies related to AI ethics. We then identify a set of principles that could facilitate fairer working conditions with AI. As part of a broader research initiative with the Global Partnership on Artificial Intelligence, we propose a set of accountability mechanisms to ensure AI systems foster fairer working conditions. Such processes are aimed at reshaping the social impact of technology from the point of inception to set a research agenda for the future. As such, the key contribution of the paper is how to bridge from abstract ethical principles to operationalizable processes in the vast field of AI and new technology at work.
Project description:BackgroundAtherosclerotic cardiovascular disease (ASCVD) is the leading cause of death worldwide, driven primarily by coronary artery disease (CAD). ASCVD risk estimators such as the pooled cohort equations (PCE) facilitate risk stratification and primary prevention of ASCVD but their accuracy is still suboptimal.MethodsUsing deep electronic health record data from 7,116,209 patients seen at 70+ hospitals and clinics across 5 states in the USA, we developed an artificial intelligence-based electrocardiogram analysis tool (ECG-AI) to detect CAD and assessed the additive value of ECG-AI-based ASCVD risk stratification to the PCE. We created independent ECG-AI models using separate neural networks including subjects without known history of ASCVD, to identify coronary artery calcium (CAC) score ≥300 Agatston units by computed tomography, obstructive CAD by angiography or procedural intervention, and regional left ventricular akinesis in ≥1 segment by echocardiogram, as a reflection of possible prior myocardial infarction (MI). These were used to assess the utility of ECG-AI-based ASCVD risk stratification in a retrospective observational study consisting of patients with PCE scores and no prior ASCVD. The study period covered all available digitized EHR data, with the first available ECG in 1987 and the last in February 2023.FindingsECG-AI for identifying CAC ≥300, obstructive CAD, and regional akinesis achieved area under the receiver operating characteristic (AUROC) values of 0.88, 0.85, and 0.94, respectively. An ensembled ECG-AI identified 3, 5, and 10-year risk for acute coronary events and mortality independently and additively to PCE. Hazard ratios for acute coronary events over 3-years in patients without ASCVD that tested positive on 1, 2, or 3 versus 0 disease-specific ECG-AI models at cohort entry were 2.41 (2.14-2.71), 4.23 (3.74-4.78), and 11.75 (10.2-13.52), respectively. Similar stratification was observed in cohorts stratified by PCE or age.InterpretationECG-AI has potential to address unmet need for accessible risk stratification in patients in whom PCE under, over, or insufficiently estimates ASCVD risk, and in whom risk assessment over time periods shorter than 10 years is desired.FundingAnumana.
Project description:BackgroundPrevious studies have identified useful endoscopic ultrasonography (EUS) features to predict the malignant potential of gastrointestinal stromal tumors (GISTs). However, the results of the studies were not consistent. Artificial intelligence (AI) has shown promising results in medicine.ObjectivesWe aimed to build a risk stratification EUS-AI model to predict the malignancy potential of GISTs.DesignThis was a retrospective study with external validation.MethodsWe developed two models using EUS images from two hospitals to predict the GIST risk category. Model 1 was the four-category risk EUS-AI model, and Model 2 was the two-category risk EUS-AI model. The diagnostic performance of the models was validated with external cohorts.ResultsA total of 1320 images (880 were very low-risk, 269 were low-risk, 68 were intermediate-risk, and 103 were high-risk) were finally chosen for building the models and test sets, and a total of 656 images (211 were very low-risk, 266 were low-risk, 88 were intermediate-risk, and 91 were high-risk) were chosen for external validation. The overall accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the four-category risk EUS-AI model in the external validation sets by tumor were 74.50%, 55.00%, 79.05%, 53.49%, and 81.63%, respectively. The accuracy, sensitivity, specificity, PPV, and NPV for the two-category risk EUS-AI model for the prediction of very low-risk GISTs in the external validation sets by tumor were 86.25%, 94.44%, 79.55%, 79.07%, and 94.59%, respectively.ConclusionWe developed a EUS-AI model for the risk stratification of GISTs with promising results, which may complement current clinical practice in the management of GISTs.RegistrationThe study has been registered in the Chinese Clinical Trial Registry (No. ChiCTR2100051191).
Project description:WD is caused by ATP7B variants disrupting copper efflux resulting in excessive copper accumulation mainly in liver and brain. The diagnosis of WD is challenged by its variable clinical course, onset, morbidity, and ATP7B variant type. Currently it is diagnosed by a combination of clinical symptoms/signs, aberrant copper metabolism parameters (e.g., low ceruloplasmin serum levels and high urinary and hepatic copper concentrations), and genetic evidence of ATP7B mutations when available. As early diagnosis and treatment are key to favorable outcomes, it is critical to identify subjects before the onset of overtly detrimental clinical manifestations. To this end, we sought to improve WD diagnosis using artificial neural network algorithms (part of artificial intelligence) by integrating available clinical and molecular parameters. Surprisingly, WD diagnosis was based on plasma levels of glutamate, asparagine, taurine, and Fischer's ratio. As these amino acids are linked to the urea-Krebs' cycles, our study not only underscores the central role of hepatic mitochondria in WD pathology but also that most WD patients have underlying hepatic dysfunction. Our study provides novel evidence that artificial intelligence utilized for integrated analysis for WD may result in earlier diagnosis and mechanistically relevant treatments for patients with WD.
Project description:AimTo evaluate the MONA.health artificial intelligence screening software for detecting referable diabetic retinopathy (DR) and diabetic macular edema (DME), including subgroup analysis.MethodsThe algorithm's threshold value was fixed at the 90% sensitivity operating point on the receiver operating curve to perform the disease classification. Diagnostic performance was appraised on a private test set and publicly available datasets. Stratification analysis was executed on the private test set considering age, ethnicity, sex, insulin dependency, year of examination, camera type, image quality, and dilatation status.ResultsThe software displayed an area under the curve (AUC) of 97.28% for DR and 98.08% for DME on the private test set. The specificity and sensitivity for combined DR and DME predictions were 94.24 and 90.91%, respectively. The AUC ranged from 96.91 to 97.99% on the publicly available datasets for DR. AUC values were above 95% in all subgroups, with lower predictive values found for individuals above the age of 65 (82.51% sensitivity) and Caucasians (84.03% sensitivity).ConclusionWe report good overall performance of the MONA.health screening software for DR and DME. The software performance remains stable with no significant deterioration of the deep learning models in any studied strata.
Project description:The aim was to systematically synthesize the current research and influence of artificial intelligence (AI) models on temporomandibular joint (TMJ) osteoarthritis (OA) diagnosis using cone-beam computed tomography (CBCT) or panoramic radiography. Seven databases (PubMed, Embase, Scopus, Web of Science, LILACS, ProQuest, and SpringerLink) were searched for TMJ OA and AI articles. We used QUADAS-2 to assess the risk of bias, while with MI-CLAIM we checked the minimum information about clinical artificial intelligence modeling. Two hundred and three records were identified, out of which seven were included, amounting to 10,077 TMJ images. Three studies focused on the diagnosis of TMJ OA using panoramic radiography with various transfer learning models (ResNet model) on which the meta-analysis was performed. The pooled sensitivity was 0.76 (95% CI 0.35-0.95) and the specificity was 0.79 (95% CI 0.75-0.83). The other studies investigated the 3D shape of the condyle and disease classification observed on CBCT images, as well as the numerous radiomics features that can be combined with clinical and proteomic data to investigate the most effective models and promising features for the diagnosis of TMJ OA. The accuracy of the methods was nearly equivalent; it was higher when the indeterminate diagnosis was excluded or when fine-tuning was used.
Project description:We propose a model of a learning agent whose interaction with the environment is governed by a simulation-based projection, which allows the agent to project itself into future situations before it takes real action. Projective simulation is based on a random walk through a network of clips, which are elementary patches of episodic memory. The network of clips changes dynamically, both due to new perceptual input and due to certain compositional principles of the simulation process. During simulation, the clips are screened for specific features which trigger factual action of the agent. The scheme is different from other, computational, notions of simulation, and it provides a new element in an embodied cognitive science approach to intelligent action and learning. Our model provides a natural route for generalization to quantum-mechanical operation and connects the fields of reinforcement learning and quantum computation.
Project description:BackgroundRisk stratification strategies for cancer therapeutics-related cardiac dysfunction (CTRCD) rely on serial monitoring by specialized imaging, limiting their scalability.ObjectivesTo examine an artificial intelligence (AI)-enhanced electrocardiographic (AI-ECG) surrogate for imaging risk biomarkers, and its association with CTRCD.MethodsAcross a five-hospital U.S.-based health system (2013-2023), we identified patients with breast cancer or non-Hodgkin lymphoma (NHL) who received anthracyclines (AC) and/or trastuzumab (TZM), and a control cohort receiving immune checkpoint inhibitors (ICI). We deployed a validated AI model of left ventricular systolic dysfunction (LVSD) to ECG images (≥0.1, positive screen) and explored its association with i) global longitudinal strain (GLS) measured within 15 days (n=7,271 pairs); ii) future CTRCD (new cardiomyopathy, heart failure, or left ventricular ejection fraction [LVEF]<50%), and LVEF<40%. In the ICI cohort we correlated baseline AI-ECG-LVSD predictions with downstream myocarditis.ResultsHigher AI-ECG LVSD predictions were associated with worse GLS (-18% [IQR:-20 to -17%] for predictions<0.1, to -12% [IQR:-15 to -9%] for ≥0.5 (p<0.001)). In 1,308 patients receiving AC/TZM (age 59 [IQR:49-67] years, 999 [76.4%] women, 80 [IQR:42-115] follow-up months) a positive baseline AI-ECG LVSD screen was associated with ~2-fold and ~4.8-fold increase in the incidence of the composite CTRCD endpoint (adj.HR 2.22 [95%CI:1.63-3.02]), and LVEF<40% (adj.HR 4.76 [95%CI:2.62-8.66]), respectively. Among 2,056 patients receiving ICI (age 65 [IQR:57-73] years, 913 [44.4%] women, follow-up 63 [IQR:28-99] months) AI-ECG predictions were not associated with ICI myocarditis (adj.HR 1.36 [95%CI:0.47-3.93]).ConclusionAI applied to baseline ECG images can stratify the risk of CTRCD associated with anthracycline or trastuzumab exposure.
Project description:Feasibility of automated volume-derived cardiac functional evaluation has successfully been demonstrated using cardiovascular magnetic resonance (CMR) imaging. Notwithstanding, strain assessment has proven incremental value for cardiovascular risk stratification. Since introduction of deformation imaging to clinical practice has been complicated by time-consuming post-processing, we sought to investigate automation respectively. CMR data (n = 1095 patients) from two prospectively recruited acute myocardial infarction (AMI) populations with ST-elevation (STEMI) (AIDA STEMI n = 759) and non-STEMI (TATORT-NSTEMI n = 336) were analysed fully automated and manually on conventional cine sequences. LV function assessment included global longitudinal, circumferential, and radial strains (GLS/GCS/GRS). Agreements were assessed between automated and manual strain assessments. The former were assessed for major adverse cardiac event (MACE) prediction within 12 months following AMI. Manually and automated derived GLS showed the best and excellent agreement with an intraclass correlation coefficient (ICC) of 0.81. Agreement was good for GCS and poor for GRS. Amongst automated analyses, GLS (HR 1.12, 95% CI 1.08-1.16, p < 0.001) and GCS (HR 1.07, 95% CI 1.05-1.10, p < 0.001) best predicted MACE with similar diagnostic accuracy compared to manual analyses; area under the curve (AUC) for GLS (auto 0.691 vs. manual 0.693, p = 0.801) and GCS (auto 0.668 vs. manual 0.686, p = 0.425). Amongst automated functional analyses, GLS was the only independent predictor of MACE in multivariate analyses (HR 1.10, 95% CI 1.04-1.15, p < 0.001). Considering high agreement of automated GLS and equally high accuracy for risk prediction compared to the reference standard of manual analyses, automation may improve efficiency and aid in clinical routine implementation.Trial registration: ClinicalTrials.gov, NCT00712101 and NCT01612312.