Project description:SignificanceA growing body of clinical and experimental evidence has challenged the traditional understanding that only the adaptive immune system can mount immunological memory. Recent findings describe the adaptive characteristics of the innate immune system, underscored by its ability to remember antecedent foreign encounters and respond in a nonspecific sensitized manner to reinfection. This has been termed trained innate immunity. Although beneficial in the context of recurrent infections, this might actually contribute to chronic immune-mediated diseases, such as atherosclerosis. Recent Advances: In line with its proposed role in sustaining cellular memories, epigenetic reprogramming has emerged as a critical determinant of trained immunity. Recent technological and computational advances that improve unbiased acquisition of epigenomic profiles have significantly enhanced our appreciation for the complexities of chromatin architecture in the contexts of diverse immunological challenges.Critical issuesKey to resolving the distinct chromatin signatures of innate immune memory is a comprehensive understanding of the precise physiological targets of regulatory proteins that recognize, deposit, and remove chemical modifications from chromatin as well as other gene-regulating factors. Drawing from a rapidly expanding compendium of experimental and clinical studies, this review details a current perspective of the epigenetic pathways that support the adapted phenotypes of monocytes and macrophages.Future directionsWe explore future strategies that are aimed at exploiting the mechanism of trained immunity to improve the prevention and treatment of infections and immune-mediated chronic disorders.
Project description:BackgroundThe path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota.MethodsWe examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing.ResultsMaternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months.ConclusionsMaternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.
Project description:Asthma is the most common chronic disease of childhood, affecting one in eight children in the USA and worldwide. It is a complex disease, influenced by both environmental exposures and genetic factors. Although epigenetic modifications (DNA methylation, histone modification and miRNA) can affect transcriptional activity in multiple genetic pathways relevant for asthma development, very limited work has been carried out so far to examine the role of epigenetic variations on asthma development and management. This review provides a brief overview of epigenetic modifications, summarizes recent findings, and discusses some of the major methodological concerns that are relevant for asthma epigenetics.
Project description:Despite advances in critical care medicine, infection remains a significant problem that continues to be complicated with the challenge of antibiotic resistance. Immunocompromised patients are highly susceptible to development of severe infection which often progresses to the life-threatening condition of sepsis. Thus, immunotherapies aimed at boosting host immune defenses are highly attractive strategies to ward off infection and protect patients. Recently there has been mounting evidence that activation of the innate immune system can confer long-term functional reprogramming whereby innate leukocytes mount more robust responses upon secondary exposure to a pathogen for more efficient clearance and host protection, termed trained immunity. Toll-like receptor (TLR) agonists are a class of agents which have been shown to trigger the phenomenon of trained immunity through metabolic reprogramming and epigenetic modifications which drive profound augmentation of antimicrobial functions. Immunomodulatory TLR agonists are also highly beneficial as vaccine adjuvants. This review provides an overview on TLR signaling and our current understanding of TLR agonists which show promise as immunotherapeutic agents for combating infection. A brief discussion on our current understanding of underlying mechanisms is also provided. Although an evolving field, TLR agonists hold strong therapeutic potential as immunomodulators and merit further investigation for clinical translation.
Project description:Altered maternal haemoglobin levels during pregnancy are associated with pre-clinical and clinical conditions affecting the fetus. Evidence from animal models suggests that these associations may be partially explained by differential DNA methylation in the newborn with possible long-term consequences. To test this in humans, we meta-analyzed the epigenome-wide associations of maternal haemoglobin levels during pregnancy with offspring DNA methylation in 3,967 newborn cord blood and 1,534 children and 1,962 adolescent whole-blood samples derived from 10 cohorts. DNA methylation was measured using Illumina Infinium Methylation 450K or MethylationEPIC arrays covering 450,000 and 850,000 methylation sites, respectively. There was no statistical support for the association of maternal haemoglobin levels with offspring DNA methylation either at individual methylation sites or clustered in regions. For most participants, maternal haemoglobin levels were within the normal range in the current study, whereas adverse perinatal outcomes often arise at the extremes. Thus, this study does not rule out the possibility that associations with offspring DNA methylation might be seen in studies with more extreme maternal haemoglobin levels.
Project description:Children born via cesarean delivery have a higher risk of metabolic, immunological, and neurodevelopmental disorders compared to those born via vaginal delivery, although mechanisms remain unclear. We conducted a meta-analysis of epigenome-wide association studies to examine the associations between delivery mode and blood DNA methylation at birth and its persistence in early childhood. Participants were from 19 pregnancy cohorts (9833 term newborns) and 6 pediatric cohorts (2429 children aged 6 to 10 years). We identified six CpGs in cord blood associated with cesarean delivery (effect size range: 0.4 to 0.7%, P < 1.0 × 10-7): MAP2K2 (cg19423175), LIM2 (cg01500140), CNP (cg13917614), BLM (cg18247172), RASA3 (cg22348356), and RUNX3 (cg20674490), independent of cell proportions and other confounders. In childhood, none of these CpGs were associated with cesarean delivery, and no additional CpGs were identified. Delivery mode was associated with cell proportions at birth but not in childhood. Further research is needed to elucidate cesarean delivery's molecular influence on offspring health.
Project description:Exposure to traffic-related air pollution (TRAP) has been implicated in asthma development, persistence, and exacerbation. This exposure is highly significant as large segments of the global population resides in zones that are most impacted by TRAP and schools are often located in high TRAP exposure areas. Recent findings shed new light on the epigenetic mechanisms by which exposure to traffic pollution may contribute to the development and persistence of asthma. In order to delineate TRAP induced effects on the epigenome, utilization of newly available innovative methods to assess and quantify traffic pollution will be needed to accurately quantify exposure. This review will summarize the most recent findings in each of these areas. Although there is considerable evidence that TRAP plays a role in asthma, heterogeneity in both the definitions of TRAP exposure and asthma outcomes has led to confusion in the field. Novel information regarding molecular characterization of asthma phenotypes, TRAP exposure assessment methods, and epigenetics are revolutionizing the field. Application of these new findings will accelerate the field and the development of new strategies for interventions to combat TRAP-induced asthma.
Project description:Asthma is one of the most common respiratory disease that affects both children and adults worldwide, with diverse phenotypes and underlying pathogenetic mechanisms poorly understood. As technology in genome sequencing progressed, scientific efforts were made to explain and predict asthma's complexity and heterogeneity, and genome-wide association studies (GWAS) quickly became the preferred study method. Several gene markers and loci associated with asthma susceptibility, atopic and childhood-onset asthma were identified during the last few decades. Markers near the ORMDL3/GSDMB genes were associated with childhood-onset asthma, interleukin (IL)33 and IL1RL1 SNPs were associated with atopic asthma, and the Thymic Stromal Lymphopoietin (TSLP) gene was identified as protective against the risk to TH2-asthma. The latest efforts and advances in identifying and decoding asthma susceptibility are focused on epigenetics, heritable characteristics that affect gene expression without altering DNA sequence, with DNA methylation being the most described mechanism. Other less studied epigenetic mechanisms include histone modifications and alterations of miR expression. Recent findings suggest that the DNA methylation pattern is tissue and cell-specific. Several studies attempt to describe DNA methylation of different types of cells and tissues of asthmatic patients that regulate airway remodeling, phagocytosis, and other lung functions in asthma. In this review, we attempt to briefly present the latest advancements in the field of genetics and mainly epigenetics concerning asthma susceptibility.