Project description:(1) Background: Acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent for the coronavirus disease (COVID-19) that has led to a pandemic that began in March 2020. The role of the SARS-CoV-2 components on innate and adaptive immunity is still unknown. We investigated the possible implication of pathogen-associated molecular patterns (PAMPs)-pattern recognition receptors (PRRs) interaction. (2) Methods: We infected Calu-3/MRC-5 multicellular spheroids (MTCSs) with a SARS-CoV-2 clinical strain and evaluated the activation of RNA sensors, transcription factors, and cytokines/interferons (IFN) secretion, by quantitative real-time PCR, immunofluorescence, and ELISA. (3) Results: Our results showed that the SARS-CoV-2 infection of Calu-3/MRC-5 multicellular spheroids induced the activation of the TLR3 and TLR7 RNA sensor pathways. In particular, TLR3 might act via IRF3, producing interleukin (IL)-1α, IL-1β, IL-4, IL-6, and IFN-α and IFN-β, during the first 24 h post-infection. Then, TLR3 activates the NFκB transduction pathway, leading to pro-inflammatory cytokine secretion. Conversely, TLR7 seems to mainly act via NFκB, inducing type 1 IFN, IFN-γ, and IFN-λ3, starting from the 48 h post-infection. (4) Conclusion: We showed that both TLR3 and TLR7 are involved in the control of innate immunity during lung SARS-CoV-2 infection. The activation of TLRs induced pro-inflammatory cytokines, such as IL-1α, IL-1β, IL-4, and IL-6, as well as interferons. TLRs could be a potential target in controlling the infection in the early stages of the disease.
Project description:TLR3 and IL-10 play a crucial role in antiviral defence. However, there is a controversy between TLR3 rs3775291 and IL-10 rs1800871 polymorphisms and the risk of hepatitis B virus (HBV) infection. The purpose of this study is to explore the relationship between the two single nucleotide mutations and the risk of HBV infection by meta-analysis. Medline, EMBASE, Web of Science, CNKI, China Wanfang database were searched for the case-control studies on the relationship between TLR3 rs3775291 and IL-10 rs1800871 polymorphism and susceptibility to HBV, updated to June 2020. The data were analysed by Stata 15.0 software. A total of 22 articles were included. The results showed that in the analysis of IL10 rs1800871 polymorphism and the risk of HBV infection, the pooled OR was 1.21 (95% CI 1.06-1.37), 1.28 (95% CI 1.04-1.56) and 1.20 (95% CI 1.06-1.37) and 1.40 (95% CI 1.07-1.83) in the allele model (C vs. T), dominant model (CC+CT vs. TT), recessive model (CC vs. CT+TT) and homozygous model (CC vs. TT), respectively. There was no statistical significance in the heterozygote model. A subgroup analysis of the Asian population showed similar results. The analysis of TLR3 rs3775291 polymorphism and the risk of HBV showed that in the allele model (T vs. C), the pooled OR was 1.30 (95% CI 1.05-1.61). Except for the recessive model, no significances were found in other genetic models. In conclusion, TLR3 rs3775291 and IL-10 rs1800871 polymorphisms are associated with the risk of HBV. Allele C and genotype CC at IL10 rs1800871 loci, as well as allele T and genotype TT at TLR rs3775291 loci, may increase susceptibility to Hepatitis B infection.
Project description:SARS-CoV-2 transmission in Western Australia, Australia, was negligible until a wave of Omicron variant infections emerged in February 2022, when >90% of adults had been vaccinated. This unique pandemic enabled assessment of SARS-CoV-2 vaccine effectiveness (VE) without potential interference from background immunity from prior infection. We matched 188,950 persons who had a positive PCR test result during February-May 2022 to negative controls by age, week of test, and other possible confounders. Overall, 3-dose VE was 42.0% against infection and 81.7% against hospitalization or death. A primary series of 2 viral-vectored vaccines followed by an mRNA booster provided significantly longer protection against infection >60 days after vaccination than a 3-dose series of mRNA vaccine. In a population free from non-vaccine-derived background immunity, vaccines against the ancestral spike protein were ≈80% effective for preventing serious outcomes from infection with the SARS-CoV-2 Omicron variant.
Project description:Takotsubo cardiomyopathy (TTS), known as stress cardiomyopathy, is a rare disorder characterized by acute and transient left ventricular systolic and diastolic dysfunction, often associated with a stressful, emotional or physical event. TTS may be closely related to SARS-CoV-2 infection and the ongoing pandemic. The enormous emotional stress caused by the pandemic and respiratory infections caused by SARS-CoV-2 could be potential triggers for TTS. The case series cited above implicates that TTS should be considered in the differential diagnosis across the entire spectrum of myocardial injury in SARS-CoV-2 infected patients. Myocardial damage associated with SARS-CoV-2 infection is usually attributed to sepsis, hypoxemia, coronary artery disease, and myocarditis. We hypothesize that TTS may also play a role among these lesions.
Project description:SARS-CoV-2, a member of the coronavirus family, is the causative agent of the COVID-19 pandemic. Currently, there is still an urgent need in developing an efficient therapeutic intervention. In this study, we aimed at evaluating the therapeutic effect of a single intranasal treatment of the TLR3/MDA5 synthetic agonist Poly(I:C) against a lethal dose of SARS-CoV-2 in K18-hACE2 transgenic mice. We demonstrate here that early Poly(I:C) treatment acts synergistically with SARS-CoV-2 to induce an intense, immediate and transient upregulation of innate immunity-related genes in lungs. This effect is accompanied by viral load reduction, lung and brain cytokine storms prevention and increased levels of macrophages and NK cells, resulting in 83% mice survival, concomitantly with long-term immunization. Thus, priming the lung innate immunity by Poly(I:C) or alike may provide an immediate, efficient and safe protective measure against SARS-CoV-2 infection.
Project description:To explore the relationship between SARS-CoV-2 infection in different time before operation and postoperative main complications (mortality, main pulmonary and cardiovascular complications) 30 days after operation; To determine the best timing of surgery after SARS-CoV-2 infection.
Project description:Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. We studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies, in surviving mice up to 4 months post-acute infection, revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. Surviving mice showed no detectable viral RNA in the brain and minimal neuroinflammation post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and reduced levels of genes associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent T helper 1 prone cellular immune responses and high neutralizing antibodies in the periphery for months post-acute infection. Overall, infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long COVID patients.