Unknown

Dataset Information

0

A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing.


ABSTRACT: Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and they were converted to Ddx1 KO via FLP recombinase. We further established TetFE ESCs, which carried a reverse tetracycline transactivator (rtTA) expression cassette and a tetracycline response element (TRE)-regulated FLPERT2 cassette in the Gt(ROSA26)Sor locus for instant and tightly regulated induction of gene KO. By utilizing TetFE Ddx1F/F ESCs, we isolated highly pure Ddx1F/F and Ddx1-/- ESCs and found that loss of Ddx1 caused rRNA processing defects, thereby activating the ribosome stress-p53 pathway. We also demonstrated cKO of various genes in ESCs and homologous recombination-non-proficient human HT1080 cells. The frequency of cKO clones was remarkably high for both cell types and reached up to 96% when EGFP-positive clones were analyzed. This all-in-one cKO system will be a powerful tool for rapid and precise analyses of gene functions.

SUBMITTER: Suzuki T 

PROVIDER: S-EPMC8053084 | biostudies-literature | 2021 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

A novel all-in-one conditional knockout system uncovered an essential role of DDX1 in ribosomal RNA processing.

Suzuki Teruhiko T   Katada Eiji E   Mizuoka Yuki Y   Takagi Satoko S   Kazuki Yasuhiro Y   Oshimura Mitsuo M   Shindo Mayumi M   Hara Takahiko T  

Nucleic acids research 20210401 7


Generation of conditional knockout (cKO) and various gene-modified cells is laborious and time-consuming. Here, we established an all-in-one cKO system, which enables highly efficient generation of cKO cells and simultaneous gene modifications, including epitope tagging and reporter gene knock-in. We applied this system to mouse embryonic stem cells (ESCs) and generated RNA helicase Ddx1 cKO ESCs. The targeted cells displayed endogenous promoter-driven EGFP and FLAG-tagged DDX1 expression, and t  ...[more]

Similar Datasets

| S-EPMC5930688 | biostudies-literature
| S-EPMC9794761 | biostudies-literature
| S-EPMC3222135 | biostudies-literature
| S-EPMC3228432 | biostudies-literature
| S-EPMC4827702 | biostudies-literature
| S-EPMC4408975 | biostudies-other
| S-EPMC5835046 | biostudies-literature
2014-09-01 | GSE54990 | GEO
| S-EPMC6901069 | biostudies-literature
| S-EPMC11417381 | biostudies-literature