Project description:Purpose of reviewIn 2012, two publications revealed a particular sensitivity of Ewing sarcoma cells to the inhibition of poly(ADP-ribose) polymerase (PARP). This review updates the reader on PARP function, the development of PARP inhibitors (PARPi) and the evidence for targeting PARP in Ewing sarcoma. It concludes with a description of ongoing/emerging PARPi clinical trials in patients with Ewing sarcoma.Recent findingsPARP has a major role in DNA repair, and is a transcription regulator. The oncoprotein in Ewing sarcoma, EWS-FLI1, is proposed to interact with PARP-1, driving PARP-1 expression, which further promotes transcriptional activation by EWS-FLI1. Thus, there are two rationales for PARPi in the treatment of Ewing sarcoma: to disrupt the interaction between EWS-FLI1 and PARP, and for chemo-potentiation or radio-potentiation. The first clinical trial with a single agent PARPi failed to show significant responses, but preclinical evidence for combinations of PARPi with chemotherapy or radiotherapy is very promising.SummaryDespite initial excitement for the potential of PARPi as single agent therapy in Ewing sarcoma, the emerging preclinical data now strongly support testing PARPi in combination with chemo/radiotherapy clinically.
Project description:Poly(ADP-ribose)polymerase-1 (PARP1) is a DNA repair enzyme highly expressed in the nuclei of mammalian cells, with a structure and function that have attracted interest since its discovery. PARP inhibitors, moreover, can be used to induce synthetic lethality in cells where the homologous recombination (HR) pathway is deficient. Several small molecule PARP inhibitors have been approved by the FDA for multiple cancers bearing this deficiency These PARP inhibitors also act as radiosensitizing agents by delaying single strand break (SSB) repair and causing subsequent double strand break (DSB) generation, a concept that has been leveraged in various preclinical models of combination therapy with PARP inhibitors and ionizing radiation. Researchers have determined the efficacy of various PARP inhibitors at sub-cytotoxic concentrations in radiosensitizing multiple human cancer cell lines to ionizing radiation. Furthermore, several groups have begun evaluating combination therapy strategies in mouse models of cancer, and a fluorescent imaging agent that allows for subcellular imaging in real time has been developed from a PARP inhibitor scaffold. Other PARP inhibitor scaffolds have been radiolabeled to create PET imaging agents, some of which have also entered clinical trials. Most recently, these highly targeted small molecules have been radiolabeled with therapeutic isotopes to create radiotherapeutics and radiotheranostics in cancers whose primary interventions are surgical resection and whole-body radiotherapy. In this review we discuss the utilization of these small molecules in combination therapies and in scaffolds for imaging agents, radiotherapeutics, and radiotheranostics. Development of these radiolabeled PARP inhibitors has presented promising results for new interventions in the fight against some of the most intractable cancers.
Project description:The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.
Project description:Poly(ADP-ribosyl)ation is a ubiquitous protein modification found in mammalian cells that modulates many cellular responses, including DNA repair. The poly(ADP-ribose) polymerase (PARP) family catalyze the formation and addition onto proteins of negatively charged ADP-ribose polymers synthesized from NAD(+). The absence of PARP-1 and PARP-2, both of which are activated by DNA damage, results in hypersensitivity to ionizing radiation and alkylating agents. PARP inhibitors that compete with NAD(+) at the enzyme's activity site are effective chemo- and radiopotentiation agents and, in BRCA-deficient tumors, can be used as single-agent therapies acting through the principle of synthetic lethality. Through extensive drug-development programs, third-generation inhibitors have now entered clinical trials and are showing great promise. However, both PARP-1 and PARP-2 are not only involved in DNA repair but also in transcription regulation, chromatin modification, and cellular homeostasis. The impact on these processes of PARP inhibition on long-term therapeutic responses needs to be investigated.
Project description:Protein ADP-ribosylation is a reversible post-translational modification (PTM) process that plays fundamental roles in cell signaling. The covalent attachment of ADP ribose polymers is executed by PAR polymerases (PARP) and it is essential for chromatin organization, DNA repair, cell cycle, transcription, and replication, among other critical cellular events. The process of PARylation or polyADP-ribosylation is dynamic and takes place across many tissues undergoing renewal and repair, but the molecular mechanisms regulating this PTM remain mostly unknown. Here, we introduce the use of the planarian Schmidtea mediterranea as a tractable model to study PARylation in the complexity of the adult body that is under constant renewal and is capable of regenerating damaged tissues. We identified the evolutionary conservation of PARP signaling that is expressed in planarian stem cells and differentiated tissues. We also demonstrate that Smed-PARP-3 homolog is required for proper regeneration of tissues in the anterior region of the animal. Furthermore, our results demonstrate, Smed-PARP-3(RNAi) disrupts the timely location of injury-induced cell death near the anterior facing wounds and also affects the regeneration of the central nervous system. Our work reveals novel roles for PARylation in large-scale regeneration and provides a simplified platform to investigate PARP signaling in the complexity of the adult body.
Project description:The year of 2005 was a watershed in the history of poly(ADP-ribose) polymerase (PARP) inhibitors due to the important findings of selective killing in BRCA-deficient cancers by PARP inhibition. The findings made PARP inhibition one of the most promising new therapeutic approaches to cancers, especially to those with specific defects. With AZD2281 and BSI-201 entering phase III clinical trials, the final application of PARP inhibitors in clinic would come true soon. This current paper will review the major advances in targeting PARP for cancer therapy and discuss the existing questions, the answers to which may influence the future of PARP inhibitors as cancer therapeutics.
Project description:Poly(ADP-ribose) (PAR) polymerase 1 (PARP1) catalyzes the poly(ADP-ribosyl)ation (PARylation) of proteins, a posttranslational modification which forms the nucleic acid-like polymer PAR. PARP1 and PAR are integral players in the early DNA damage response, since PARylation orchestrates the recruitment of repair proteins to sites of damage. Human RecQ helicases are DNA unwinding proteins that are critical responders to DNA damage, but how their recruitment and activities are regulated by PARPs and PAR is poorly understood. Here we report that all human RecQ helicases interact with PAR noncovalently. Furthermore, we define the effects that PARP1, PARylated PARP1, and PAR have on RECQL5 and WRN, using both in vitro and in vivo assays. We show that PARylation is involved in the recruitment of RECQL5 and WRN to laser-induced DNA damage and that RECQL5 and WRN have differential responses to PARylated PARP1 and PAR. Furthermore, we show that the loss of RECQL5 or WRN resulted in increased sensitivity to PARP inhibition. In conclusion, our results demonstrate that PARP1 and PAR actively, and in some instances differentially, regulate the activities and cellular localization of RECQL5 and WRN, suggesting that PARylation acts as a fine-tuning mechanism to coordinate their functions in time and space during the genotoxic stress response.
Project description:Poly(ADP-ribose) polymerases (PARPs) are involved in many aspects of the cellular response to various forms of damage. PARP-1 and PARP-2, the most abundant PARPs, are central to the response to specific types of DNA damage, especially single-strand breaks. Inhibition of PARP activity may sensitize the cell to exogenous agents such as chemotherapy and radiation. In circumstances where rescue pathways are deficient, particularly the homologous recombination (HR)-directed DNA repair pathway, inhibition of PARP may result in "synthetic lethality." BRCA mutation-associated breast cancers are a paradigm of HR-directed repair deficient tumors. Early clinical trials have demonstrated significant activity of single-agent PARP inhibitors in BRCA-deficient breast and ovarian cancer. Because of phenotypic similarities between some "triple-negative" breast cancers (TNBC) and the most prevalent type of breast cancer seen in BRCA1 mutation carriers, some have hypothesized that TNBC might also be specifically sensitive to PARP inhibition. The activity of single-agent PARP inhibitors in TNBC has not been reported. One trial did suggest significant enhancement of the activity of platinum-based combination chemotherapy, without incremental toxicity. These studies indicate that PARP inhibition is an exciting new approach to the treatment of breast cancers in women with underlying BRCA mutations and possibly in sporadic cancers with defects in HR-directed repair. Future studies will be necessary to determine whether the effectiveness of PARP inhibitors in nonhereditary cancer requires an underlying HR defect or whether these agents may improve the activity of conventional chemotherapy by other means. In addition, studies will be required to determine whether PARP inhibitors may induce synthetic lethality in tumors with defects in pathways other than the BRCA-dependent DNA repair pathway. If either or both of these prove to be the case, then PARP inhibition may benefit a wide spectrum of cancer patients.
Project description:Poly (ADP-ribose) polymerase (PARP) inhibitors have shown promising activity in epithelial ovarian cancers, especially relapsed platinum-sensitive high-grade serous disease. Consistent with preclinical studies, ovarian cancers and a number of other solid tumor types occurring in patients with deleterious germline mutations in BRCA1 or BRCA2 seem to be particularly sensitive. However, it is also becoming clear that germline BRCA1/2 mutations are neither necessary nor sufficient for patients to derive benefit from PARP inhibitors. We provide an update on PARP inhibitor clinical development, describe recent advances in our understanding of PARP inhibitor mechanism of action, and discuss current issues in the development of these agents.